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1 Chapter 1

• Classical Definition
Number of ways it can occur

Total number of outcomes

• Relative Frequency (Portion or fraction of times it can occur in a very long series of repetition)

• Surjective probability (How sure the person making the statement is)

2 Chapter 2

A sample space is discrete if it is finite Simple event - an event containing only one point
Compound even - an event made up of two or more simple events

2.1 Odds

Odds in favour of an event A

in favour =
P (A)

1− P (A)

Odds against an event

against =
1− P (A)

P (A)

2.2 Chapter 3

if (selection with replacement) {

n^k

} else {

if (order matters) {

permutation (arrangements or lists)

} else {

combination (subsets)

}

}

2.3 Permutation

n(k)

2.4 Combination (
n

k

)
=

n!

(n− k)!
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2.5 Chapter 4

2.6 De Morgan’s Law

(A ∪B)C = AC ∩BC

(A ∩B)C = AC ∪BC

2.7 Rules

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

P (A ∪B) = P (A) + P (B)− P (A ∩B)

2.8 Independence

A and B are independent iff
P (A ∩B) = P (A)P (B)

2.9 Mutually Exclusive

P (A ∩B) = 0

2.10 Conditional

P (A|B) =
P (A ∩B)

P (B)

2.11 Product Rule

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A)

2.12 Bayes Theorem

P (B) = P (B ∩A1) + · · ·+ P (B ∩Ak)

P (B) = P (B)P (A1|B) + . . . P (B)P (Ak|B)
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3 Chapter 5

3.1 Discrete Uniform Distribution

f(x) =
1

b− a+ 1
, x = a, a+ 1, . . . , b

3.2 Hypergeometric Distribution

f(x) =

(
r
x

)(
N−r
n−x

)(
N
n

)
min(r, n) ≥ x ≥ max(0, n− (N − r))
N objects in total where r are successes, and we randomly select n without replacement
X = number of successes observed among n trials

X ∼ Hypergeo(N, r, n)

3.3 Binomial Distribution

f(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

Requirements:

• Two Trials

• Independent Trials (With replacement)

• Multiple Trials

• Same Probability

X = number of successes observed among n trials

X ∼ Binom(n, p)

3.4 Negative Binomial Distribution

f(x) =

(
x+ k − 1

x

)
pk(1− p)x, x = 0, 1, 2, . . .

Two outcomes, independent trials, same probability of success. Do experiments until we obtain k
successes. X = the number of failures obtained before kth success.

X ∼ NB(k, p)
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3.5 Geometric Distribution

f(x) = p(1− p)x, x = 0, 1, 2, . . .

Two outcomes, independent trials, same probability of success. X = the number of failures
obtained before 1st success.

X ∼ Geo(p)

3.6 Poisson Distribution

f(x) =
e−µµx

x!
, x = 0, 1, 2, . . . , µ > 0

X = the number of events of some type. The events occur according to µ = np.

3.7 Poission Distribution from Poison Process

Order notation:
g(∆t) = o(∆t),∆t → 0

This means g approaches 0 quicker than ∆t as ∆t approaches 0.

g(∆t)

∆t
→ 0

Setup: assume a certain type of event occurs at random points in time and satisfies the following

• Independence The number of occurrences in non-overlapping intervals are independent

• Individuality P(2 or more events in (t, t+∆t)) = o(∆t) as t → 0. (Events do not occur in
clusters, but individually)

• Homogeneity / Uniformity Occurs at a uniform rate λ over time so

P (one event in (t, t+∆t)) = λ∆t+ o(∆t)

f(x) = P (X = x) =
e−λt(λt)x

x!
, x = 0, 1, 2, . . .

X =number of events in a specified length

X ∼ Poi(λ), µ = λt

Also applies when events occur randomly in space (replace time with volume or area)
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4 Chapter 7

4.1 Frequency Distribution

• Mean > Median (right-skewed)

• Mean = Median (Symmetric)

• Mean < Median (Left-Skewed)

4.2 Arithmetic Mean

x̄ =

n∑
i=1

xi
n

4.3 Expected Value

Expected value (mean or expectation) of a discrete random variable X with probability function
f(x) is:

µ = E(X) =
∑
allx

xf(x)

4.4 Properties of Expectation

E[ag(X) + b] = aE[g(X)] + b

E[Ag1(X) + bg2(X)] = aE[g1(X)] + bE[g2(X)]

E(a) = a,E[g(X)] = g(E[X]) only if g(X) is a linear function

4.5 Expected Values of Distributions

• Binomial E(X) = np

• Poisson E(X) = µ = λt

• Discrete E(X) =
a+ b

2

• Hypergeometric E(X) =
nr

N

• Negative Binomial E(X) =
k(1− p)

p

• Geometric E(X) =
1− p

p

4.6 Interquartile Range (IQR)

IQR = Q3 −Q1, x̃ = Q2
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4.7 Variability

E(X − µ) = E(X)− µ = 0

σ2 = V ar(X) = E[(X − µ)2]

σ =
√
E[(X − µ)2]

V ar(X) = E(X2)− µ2 = E[X(X − 1)] + µ− µ2

4.8 Variance of Distributions

• Binomial V ar(X) = np(1− p)

• Poisson V ar(X) = µ2

• Discrete Uniform V ar(X) =
(b− a+ 1)2 − 1

12

• Hypergeometric V ar(X) =
nr

N
(1− r

N
)
N − n

N − 1

• Negative Binomial V ar(X) =
k(1− p)

p2

• Geometric V ar(X) =
1− p

p2

4.9 Properties of Mean and Variance

Let Y = aX + b, E(a) = a, V ar(a) = 0

1. µY = E(Y ) = aE(X) + b

2. σ2
Y = V ar(Y ) = a2V ar(X)
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5 Chapter 8

5.1 Cumulative Distribution Function (c.d.f)

• F (x) = P (X ≤ x)

• F (x) is defined for all x ∈ R

• limx→∞ F (x) = 0, limx→∞ F (x) = 1

• F (x) is a non decreasing function

• P (a < X ≤ b) = F (b)− F (a) =
∫ b
a f(x)dx

• P (X = x) = 0, P (a < X < b) = P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) =
F (b)− F (a)

5.2 Probability Density Function (p.d.f)

Suppose an interval [x, x+∆x]

P (x ≤ X ≤ x+∆x) = F (x+∆x)− F (x)

f(x) = lim
∆x→0

P (x ≤ X ≤ x+∆x)

∆x
=

dF (x)

dx
= lim

∆x→0

F (x+∆x)− F (x)

∆x

Continuous r.vs.

f(x) =
d

dx
F (x), F (x) = P (X ≤ x) =

∫ x

−∞
fx(x)dx

Discrete r.vs.

f(x) = P (X = x) = F (x)− F (x− 1), F (x) =
x∑

w=−∞
f(w)

Properties:

• P (a ≤ X ≤ b) = F (b)− f(a) =
∫ b
a f(x)dx

• f(x) ≥ 0

•
∫∞
−∞ f(x)dx =

∫
allx f(x)dx = 1

• F (x) =
∫ x
−∞ f(u)du

• P (x− ∆x

2
≤ X ≤ x+

∆x

2
) = F (x+

∆x

2
)− F (x− ∆x

2
) ≃ f(x)∆x
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5.3 Expectation, Mean, Variance of Continuous Distribution

E(g(X)) =

∫
allx

g(x)f(x)dx

E(x) =

∫
allx

xf(x)dx

σ2 = V ar(X) = E(X2)− E(X)2

5.4 Continuous Uniform Distribution

X is a r.v. taking on values in the interval [a, b] with all subintervals of a fixed length being equally
likely

X ∼ Unif [a, b]

The probably density function (p. d. f) must be a constant f(x) = k so

fX(x) =


1

b− a
a ≤ x ≤ b

0 otherwise

The Cumulative Distribution function

FX(x) =


0 x < a
x− a

b− a
a ≤ x ≤ b

1 x > b

E(X) =
b+ a

2

V ar(X) =
(b− a)2

12

5.5 Exponential Distribution

In a Poisson Process for events in time, then the length of time we wait until the first occurence.
λ = average number of occurrences per unit of time
θ = average waiting time for an occurrence

Fx(x) = 1− e−x/θ, x > 0

fx(x) =
1

θ
e−x/θ, x > 0

E(x) = θ =
1

λ
, V ar(X) = θ2 =

1

λ2
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5.6 Gamma Function

Γ(α) =

∫ ∞

0
xα−1e−x = (α− 1)!

5.7 Memoryless Property

For exponential Distributions,

P (X > c+ b|X > b) = P (X > c)

5.8 Normal Distribution

A r.v. defined on (−∞,∞) has a normal distribution if it has form

f(x) =
1√
2πσ

e
−
1

2
(
x− µ

σ
)2

−∞ < µ < ∞, σ > 0
µ shifts distribution along x axis, σ2 stretches or pulls the distribution

5.9 Finding Probabilities on N(0, 1) tables

Let X ∼ N(µ, σ2)

Z =
X − µ

σ

Then Z ∼ (0, 1) (use table)

5.10 Gaussian Distribution

X ∼ G(µ, σ)
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6 Chapter 9

6.1 Joint Probability Function

f(x, y) = P (X = x, Y = y)

f(x1, x2, . . . , xn) = P (X1 = x1, . . . , Xn = xn)

if there are n r.v.s X1, . . . , Xn

• f(x, y) ≥ 0 for all (x, y)

•
∑

all(x,y) f(x, y) = 1

6.2 Marginal Distribution

f1(x) = fX(x) =
∑
ally

f(x, y)

f2(y) = fY (y) =
∑
allx

f(x, y)

f1,3(x1, x3) =
∑
allx2

f(x1, x2, x3)

6.3 Independent R.V.

f(x, y) = f1(x)f2(y) ⇐⇒ It is independent

f(x1, . . . , xn) = f1(x1) . . . fn(xn) also applies

6.4 Conditional Probability

f(x|y) = f(x, y)

f2(y)
=

P (X = x, Y = y)

P (Y = y)

P (Y = y) > 0. If it is independent, = f1(x)

6.5 Functions

If x+ y = t, y = t− x

fT (t) = P (T = t) =
∑
allx

f(x, t− x) =
∑
allx

P (X = x, Y = t− x)

In general, U = g(X1, . . . Xn) of two R.V.s X, Y

FU (u) = P (U = u) =
∑

all(x1,...xn),g(x1,...xn)=u

f(x1, . . . xn)

If X ∼ Bin(n, p) and Y ∼ Bin(m, p) independently then

T = X + Y ∼ Bin(n+m, p)

10



STAT 230 : Probability
Formula / Theorem Sheet

Spring 2024
by Strafe <3

6.6 Multinomial Distribution

The experiment is repeated independently n times with k distinct outcomes. Let the probability
of these k types be p1, p2, . . . pk each time. Let Xi be the. number of times be i-th type occurs

• p1 + · · ·+ pk = 1

• X1 + · · ·+Xk = n

•
∑

f(x1, . . . xk) = 1

f(x1, . . . , xk) =
n!

x1!x2! . . . xk!
px1
1 px22 . . . p

xk
k

If we are only interested in X2,
P2 = 1− P1 − · · · − Pk and X2 ∼ Bin(n; p2)
If T = X1 +X2, T ∼ Bin(n; p1 + p2)

X1|T = t ∼ Bin

(
t;

P1

P1 + P2

)
6.7 Covariance and Correlation

Recall E[g(x)] = Σallxg(x)f(x)

E[g(X,Y )] = Σall(x,y)g(x, y)f(x, y)

E[ag1(X,Y ) + bg2(X,Y )] = aE[g1(X,Y )] + bE[g2(X,Y )]

Covariance

Cov(X,Y ) = σXY = E[(X − µX)(Y − µY )] = E[XY ]− E(X)E(Y )

µX = E(X)

6.8 Independence and Covariance

If X,Y are independent, Cov(X,Y ) = 0 If X,Y are independent R.V.s

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )]

6.9 Correlation Coefficient

ρ = Corr(X,Y ) =
Cov(X,Y )

σXσY

Lies within [-1, 1]. It will have the same sign as Cov(X, Y). As ρ → ±1 the relationship between
X, Y becomes closer to linear.
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Covariance interpret the sign, Correlation interpret the magnitude AND sign

6.10 Expectation

• E(aX + bY ) = aE(X) + bE(Y )

• If E(Xi) = µi), E(ΣaiXi) = Σaiµi

• Let X1, . . . , Xn have mean µ,

E(
Σn
i=1xi
n

) = µ

1. Cov(X,X) = E[(x− µX)(x− µX)] = E[(x− µX)2] = V ar(x)

2. Cov(aX + bY, cU + dV ) = acCov(X,U) + adCov(X,V ) + bcCov(Y, U) + bdCov(Y, V )

6.11 Results for Variance

1. Variance of a linear combination for r.v.s X, Y and constants a,b

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

V ar(aX − bY ) = a2V ar(X) + b2V ar(Y )− 2abCov(X,Y )

2. Variance of a sum of independent r.v.s, since Cov(X,Y ) = 0

V ar(X + Y ) = V ar(X − Y ) = σ2
X + σ2

Y

3. Variance of a general linear combination. Let ai be constants and V ar(Xi) = σ2
i

V ar(

n∑
i=1

aiXi) =

n∑
i=1

a2iσ
2
i + 2

n∑
i=1

n∑
j=i+1

aiajCov(Xi, Xj)
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4. Variance of a linear combination of independent random variables

(a) If X1, X2, . . . , Xn are independent random variables, then Cov(Xi, Xj) = 0 so that

V ar(
n∑

i=1

aiXi) =
n∑

i=1

a2iV ar(Xi)

(b) If X1, X2, . . . , Xn are independent r.v.s and all have the same variance σ2 then

V ar(

∑n
i=1Xi

n
) =

σ2

n

6.12 Linear Combination of Independent Normal R.V.

Let X ∼ N(µ, σ2), Y = aX +B,
y ∼ N(aµ+ b, a2σ2)

Let X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2) be independent R.V.s

aX + bY ∼ N(aµ1 + bµ2, a
2σ2

1 + b2σ2
2)

Let X1, . . . , Xn be independent N(µ, σ2) random variable.

Total =
n∑

i=1

Xi ∼ N(nµ;nσ2)

Sample Mean = x =

∑n
i=1Xi

n
∼ N(µ;

µ2

n
)

6.13 Indicator Variables

Binary (0, 1) that indicates if an event has taken place. e.g. X ∼ Bin(n, p)

Xi =

{
0 if ith trial was a failure (probability 1 - p)

1 if ith trial was a success (probability p)

X =
n∑

i=1

Xi

E(X) = np

V ar(x) = np(1− p)
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7 Chapter 10

7.1 Central Limit Theorem (C.L.T.)

If X1, X2, . . . , Xn are independent r.v.s all have the same distribution mean µ and variance σ2

then as n → ∞, the cumulative distribution function of the random variable

(
∑n

i=1Xi)− nµ

σ
√
n

=
Sn − nµ

σ
√
n

approaches the N(0, 1) cumulative distribution function. Similarly the c.d.f. of

X − µ

σ/
√
n

approaches the N(0, 1) c.d.f.

• If Xi themselves have a normal distribution, then Sn, X have exactly normal distribution for
all values of n

• If Xi do not have a normal distribution, then Sn, X have approximately normal distribution
for large values of n.

7.2 Normal Approximation to Poisson Distribution

Let X ∼ Poisson(µ = λt)

Z =
X − µ
√
µ

is approximately N(0, 1)

7.3 Normal Approximation to Binomial Distribution

Let X ∼ Bin(n, p) Then for n large, the r.v. X ∼ N(µ = np;σ2 = np(1− p))

W =
X − np√
np(1− p)

is approximately N(0, 1)

7.4 Moment Generating Function (m.g.f)

Mx(t) = E[etX ] =
∑
x

etxf(x)

The m.g.f. is assumed to be defined and finite for values of t ∈ [−a, a] for a > 0

7.5 m.g.f. Theorem

Let r.v. X have m.g.f. M(t)
E[Xr] = M (r)(0), r = 1, 2, . . .

14
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