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1 Chapter 1

Number of ways it can occur

e (Classical Definition
Total number of outcomes

e Relative Frequency (Portion or fraction of times it can occur in a very long series of repetition)

e Surjective probability (How sure the person making the statement is)

2 Chapter 2

A sample space is discrete if it is finite Simple event - an event containing only one point
Compound even - an event made up of two or more simple events

2.1 Odds
Odds in favour of an event A
1 favour — LA
avour = 1= P(4)
Odds against an event
against = LP(A)
S 07y

2.2 Chapter 3

if (selection with replacement) {
n"k
} else {
if (order matters) {
permutation (arrangements or lists)
} else {
combination (subsets)

}

2.3 Permutation

2.4 Combination
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2.5 Chapter 4

2.6 De Morgan’s Law
(AUB)Y = A° N B¢
(AN B)Y = A“U B¢

2.7 Rules
P(AUBUC)=P(A)+P(B)+ P(C)—P(ANB)—-—P(ANC)—P(BNC)+P(ANnBNC)
P(AuB)=P(A)+ P(B) - P(ANB)

2.8 Independence

A and B are independent iff
P(ANB)=P(A)P(B)

2.9 Mutually Exclusive

P(ANB)=0
2.10 Conditional
P(ANB

2.11 Product Rule
P(ANB)=P(B)P(A|B) = P(A)P(B|A)

2.12 Bayes Theorem
P(B)=P(BNAy)+--+ P(BNAy)
P(B) = P(B)P(Ai1|B) + ... P(B)P(Ax|B)
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3 Chapter 5
3.1 Discrete Uniform Distribution
1
f(ﬂf) = m,mza,a+17...,b

3.2 Hypergeometric Distribution
() (=)
flw) = 2=

()

min(r,n) >z > max(0,n — (N —r))
N objects in total where r are successes, and we randomly select n without replacement
X = number of successes observed among n trials

X ~ Hypergeo(N,r,n)

3.3 Binomial Distribution

Requirements:

e Two Trials

Independent Trials (With replacement)

Multiple Trials
e Same Probability

X = number of successes observed among n trials

X ~ Binom(n,p)

3.4 Negative Binomial Distribution

f(z) = (x+k_1>pk(1—p)x,m:0,1,2,...

X

Two outcomes, independent trials, same probability of success. Do experiments until we obtain k
successes. X = the number of failures obtained before k™ success.

X ~ NB(k,p)
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3.5 Geometric Distribution

fz)=p(1-p)*,2=0,1,2,...

Two outcomes, independent trials, same probability of success. X = the number of failures
obtained before 15¢ success.
X ~ Geo(p)

3.6 Poisson Distribution

e
f(:c)z%,sz,l,Q,...,u>0

X = the number of events of some type. The events occur according to pu = np.

3.7 Poission Distribution from Poison Process

Order notation:
g(At) = o(At), At — 0

This means g approaches 0 quicker than At as At approaches 0.

9(At)
= =0
At
Setup: assume a certain type of event occurs at random points in time and satisfies the following
e Independence The number of occurrences in non-overlapping intervals are independent

e Individuality P(2 or more events in (¢, + At)) = o(At) as t — 0. (Events do not occur in
clusters, but individually)

e Homogeneity / Uniformity Occurs at a uniform rate A over time so

P(one event in (t,t + At)) = AAt + o( At)

f(x):P(X:x):e)\;(')\t)x,xzo,lﬂ,...

X =number of events in a specified length

X ~ Poi(A),n =Mt

Also applies when events occur randomly in space (replace time with volume or area)
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4 Chapter 7

4.1 Frequency Distribution
e Mean > Median (right-skewed)

e Mean = Median (Symmetric)

e Mean < Median (Left-Skewed)

4.2 Arithmetic Mean

n

:zzzgi

=1

~

4.3 Expected Value

Expected value (mean or expectation) of a discrete random variable X with probability function
f(z) is:
= E(X) =Y af(x)

allx

4.4 Properties of Expectation
Elag(X)+ b =aF[g(X)]+b
E[Ag1(X) + bga(X)] = aE[g1(X)] + bE[g2(X)]
X)

E(a) = a,E[g(X)] = g(E[X]) only if g(X) is a linear function

4.5 Expected Values of Distributions
e Binomial E(X) =np
e Poisson E(X)=pu= M

a+b

e Discrete E(X) = 5

e Hypergeometric F(X) =

=] 3

e Negative Binomial E(X) =

1—
Geometric E(X) = =P
p

4.6 Interquartile Range (IQR)
IQR=Q3 - Q1,2 =Q2
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4.7 Variability
B(X —p) = B(X) = =0
o? = Var(X) = B[(X — )’
o= VE[(X —p)?

Var(X) = B(X?) - p® = BIX(X — )] + p — i

4.8 Variance of Distributions
e Binomial Var(X) = np(1 — p)

e Poisson Var(X) = u?

e Discrete Uniform Var(X) =

e Hypergeometric Var(X) = —(1 —

e Negative Binomial Var(X) =

Geometric Var(X) =

4.9 Properties of Mean and Variance
Let Y =aX + b, E(a) = a,Var(a) =0
1. uyy =E(Y)=aE(X)+b

2. 02 =Var(Y) = a*Var(X)



STAT 230 : Probability
Formula / Theorem Sheet

Spring 2024
by Strafe <3

5 Chapter 8
5.1 Cumulative Distribution Function (c.d.f)
e F(z)=P(X <ux)
e F(z) is defined for all x € R
o lim, oo F(z) =0,lim, 00 F(z) =1
e F(z) is a non decreasing function

e Pla< X <b)=F(b)—F(a) = [’ f(x)dz

e PIX =2)=0Pa<X<b=Pa<X<b=Pa<X<b=Pa<X<b =

F(b) = F(a)

5.2 Probability Density Function (p.d.f)

Suppose an interval [z, x + Az]

Pz <X <z+Azx)=F(x+ Az) — F(z)

F(z + Az) — F(x)

. P@e<X<z4+Az) dF(z) .
J(z) = Al:}cgo Az - dr Alz}cgo Az

Continuous r.vs. p

f@) = 2 @), F@) = PO <o) = [ fola)ds

Discrete r.vs.

(@)= P(X =) = F(a) - F(e - 1), F@) = Y f(w)

Properties: s
o P(a<X <b)=F(b) - f(a) = [} f(x)dx
o f(z)=0
o [ flx)dx = [, flx)dz =1
o Plx)=[* f(u)du
e Pla- B0 < x <ot B = Pt B0 - Fla - 50 = f)Aa
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5.3 Expectation, Mean, Variance of Continuous Distribution

5.4 Continuous Uniform Distribution

X is ar.v. taking on values in the interval [a, b] with all subintervals of a fixed length being equally
likely
X ~ Unifla,b

The probably density function (p. d. f) must be a constant f(z) = k so

1
— a<z<bd
fX (x) = b—a -
0 otherwise
The Cumulative Distribution function
0 r<a
Fx(x) = E:Z a<zx<b
1 x>b
B(X) = b+a
2
(b a)?
Var(X) = B

5.5 Exponential Distribution

In a Poisson Process for events in time, then the length of time we wait until the first occurence.
A = average number of occurrences per unit of time
f = average waiting time for an occurrence

Fox)=1—e"% 2>0

fo(z) = %eix/ewr >0
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5.6 Gamma Function

5.7 Memoryless Property

For exponential Distributions,

P(X>c+bX >b)=P(X >¢)

5.8 Normal Distribution

A r.v. defined on (—o0,00) has a normal distribution if it has form

lz—p
f@)= — 25 2
V2mo

—oo < pu<oo,0>0
o shifts distribution along x axis, o2 stretches or pulls the distribution

5.9 Finding Probabilities on N(0, 1) tables
Let X ~ N(u,0?)

Then Z ~ (0,1) (use table)

5.10 Gaussian Distribution

X ~G(p,0)
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6 Chapter 9

6.1 Joint Probability Function
flzr, 20, ... xn) = P(X1=21,..., X = )
if there are n r.v.s Xq,..., X,

e f(x,y) >0 for all (z,y)
* Dy f(@y) =1
6.2 Marginal Distribution
fil@) = fx(x) =) flx,y)

ally
fay) = fr(y) =D fla,y)
allz
fra(@y,xs) =) f(z1, 29, 73)

allxs

6.3 Independent R.V.
f(z,y) = fi(x) fa(y) <= It is independent
flx1, ... xn) = fi(z1) ... fn(zy) also applies

6.4 Conditional Probability

_flay) _ PX=2Y =y
T =" = Por=y)
P(Y =y) > 0. If it is independent, = f(x)

6.5 Functions
foet+y=ty=t—=

frit)=P(T=t)=> f(zt—-z)=>» P(X=2Y=t-2)

allx allx

In general, U = g(X1,... X,,) of two R.V.s X, Y

Fy(u)=PU =u) = fz1,...zp)

all(x1,...xn),9(T1,...xn)=u
If X ~ Bin(n,p) and Y ~ Bin(m,p) independently then
T=X+Y ~ Bin(n+m,p)

10
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6.6 Multinomial Distribution

The experiment is repeated independently n times with k distinct outcomes. Let the probability
of these k types be p1,po, ... pg each time. Let X; be the. number of times be i-th type occurs

o prt-tpp=1
[ ] X1++X;€:n

° Zf(xl,...l’k):1

! P P52 ... D"
B LE R LR

flxy,. ... xp) =

N l’lll‘g! .
If we are only interested in Xo,

P2 =1 —P1 — ‘--—Pk and XQ ~ Bin(n;pg)

IfT =X+ Xo,T ~ Bin(n;p1 + p2)

. Py
Xi1|T =t~ Bin | t;
i ( P+ P

6.7 Covariance and Correlation
Recall Eg(x)] = Sauzg(2) f ()
Elg(X,Y)] = Zaii(ey)9(z, y) f (2, y)
Elagi(X,Y) + bga(X,Y)] = aE[g1(X,Y)] 4 bE[g2(X, Y]
Covariance
Cov(X,Y) = oxy = E[(X — ux)(Y — py)] = E[XY] - E(X)E(Y)

px = E(X)

6.8 Independence and Covariance

If X,Y are independent, Cov(X,Y) =0 If X, Y are independent R.V.s
Elg1(X)g2(Y)] = E[g1(X)]E[g2(Y)]

6.9 Correlation Coefficient
Cov(X,Y)
oxO0y
Lies within [-1, 1]. It will have the same sign as Cov(X, Y). As p — %1 the relationship between
X, Y becomes closer to linear.

p=_Corr(X,Y) =

11
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Covariance interpret the sign, Correlation interpret the magnitude AND sign

6.10 Expectation
o E(aX 4+0bY)=aE(X)+bE(Y)
o If E(X;) =), E(Xa;X;) = Xa;u;
o Let X4,...,X,, have mean pu,

) =n

1. Cov(X, X) = El(@ — px) (@ — ux)] = El(@ — ux)?] = Var(x)

E(

2. Cov(aX +bY,cU +dV) = acCov(X,U) 4+ adCov(X,V) + beCov(Y,U) 4+ bdCov(Y, V)

6.11 Results for Variance
1. Variance of a linear combination for r.v.s X, Y and constants a,b
Var(aX +bY) = a*Var(X) + b*Var(Y) + 2abCov(X,Y)
Var(aX —bY) = a*Var(X) + 0*Var(Y) — 2abCov(X,Y)
2. Variance of a sum of independent r.v.s, since Cov(X,Y) =0
Var(X +Y)=Var(X - Y) = 0% + 0%
3. Variance of a general linear combination. Let a; be constants and Var(X;) = o?
Var(znj a; X;) = zn:agaf + 227‘: z": a;a;Cov(X;, X;)
i=1 i=1

i=1 j=i+1

12
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4. Variance of a linear combination of independent random variables

(a) If Xy, Xo,...,X, are independent random variables, then Cov(X;, X;) = 0 so that
Var(z a; X;) = Z azVar(X;)
i=1 i=1

(b) If X1, Xs,..., X, are independent r.v.s and all have the same variance o2 then
"X 2
Var(izlzl )= 7
n n

6.12 Linear Combination of Independent Normal R.V.

Let X ~ N(u,02),Y =aX + B,
y ~ N(ap +b,a*c?)

Let X ~ N(u1,0%),Y ~ N(ug,03) be independent R.V.s
aX +bY ~ N(apy + bus, a*o? + b*03)
Let X1,..., X, be independent N (u,c?) random variable.
n
Total = ZXi ~ N(nu;no?)
i=1

Doy Xi 1w

Sample Mean =7 = ~ N(p;—)
n

6.13 Indicator Variables

Binary (0, 1) that indicates if an event has taken place. e.g. X ~ Bin(n,p)

P =

{0 if i'" trial was a failure (probability 1 - p)

1 if 4*" trial was a success (probability p)

13
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7 Chapter 10

7.1 Central Limit Theorem (C.L.T.)
If X1, Xo,...,X,, are independent r.v.s all have the same distribution mean p and variance o2

then as n — oo, the cumulative distribution function of the random variable

(Z?:l Xi) —np _ Sn — npt

ovn ov/n
approaches the N(0,1) cumulative distribution function. Similarly the c.d.f. of
X—p
o//n

approaches the N(0,1) c.d.f.

e If X; themselves have a normal distribution, then S,,, X have exactly normal distribution for
all values of n

e If X; do not have a normal distribution, then S,,, X have approximately normal distribution
for large values of n.

7.2 Normal Approximation to Poisson Distribution

Let X ~ Poisson(u = At)
X —p

N

Z:

is approximately N (0,1)

7.3 Normal Approximation to Binomial Distribution

Let X ~ Bin(n,p) Then for n large, the r.v. X ~ N(u = np;0? = np(1 — p))
X —np
np(1 —p)

is approximately N(0,1)

7.4 Moment Generating Function (m.g.f)
My(t) = B[] =) " [(z)

T

The m.g.f. is assumed to be defined and finite for values of ¢ € [—a,a] for a > 0

7.5 m.g.f. Theorem

Let r.v. X have m.g.f. M(t)
E[X") = M™(0),r =1,2,...

14
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