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1 Week 1

1.1 Choices of AND / OR

On a table there are 7 apples, 8 oranges, 5 bananas
An apple and a banana: 7× 5 = 35
An apple or an orange: 7 + 8 = 15

1.2 Lists and Permutation

A set of S is a list of elements of S exactly one of each. For example, {1, a,X, g} are

1aXg, a1Xg,X1ag, g1aX, . . .

A permutation is a list of the set {1, 2, . . . , n}
Theorem For every n ≥ 1, the number of lists of an n-element set S is

n(n− 1)(n− 2) . . . 3 · 2 · 1 = n!

1.3 Number of Subsets

For every n ≥ 0, the number of subsets of an n− element set is 2n.
A partial list of a set S is a list of subset of S.

1.4 Number of Partial Lists

The number of partial lists of length k of an n-element set is n(n− 1) . . . (n− k + 2)(n− k + 1)

1.5 Number of k-element subsets

For 0 ≤ k ≤ n the number of k-element subsets of an n-element set is(
n

k

)
=

n!

k!(n− k)!
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
1.6 Multisets

Let n ≥ 0 and t ≥ 1 be integers. A multiset of size n with elements of t types is a sequence of
nonnegative integers (m1, . . . ,mt) s.t.

m1 +m2 + · · ·+mt = n

The number of n− element mutlisets with elements of t types is(
n+ t− 1

t− 1

)
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2 Week 2

2.1 Bijection

Let A and B be sets and let f : A→ B

• f is surjective (onto) if for every b ∈ B, there exists an a ∈ A such that f(a) = b

• f is injective (one-to-one) if for every a, a′ ∈ A, if f(a) = f(a′) then a = a′

• f is bijective if its both surjective and injective.

Corollary: If there exists a bijection between two sets A and B and at least one is finite, they
are both finite and |A| = |B|
Proposition: Let f : A → B and g : B → A be functions between two sets A and B. Assume
the following

• For all a ∈ A, g(f(a)) = a

• For all b ∈ B, f(g(b)) = b

Then both f, g are bijections. Moreover, a ∈ A, b ∈ B, we have f(a) = b ⇐⇒ g(b) = a

2.2 Formal Power Series

It is an expression of the form

G(x) =
∑
n≥0

gnx
n

where the coefficients (g0, g1, g2, . . . ) are a sequence of real numbers.
Proposition: The inverese of F (x) =

∑
n≥0 fnx

n exists if and only if f0 ̸= 0

2.3 Binomial Theorem

(1 + x)n =
n∑

k=0

(
n

k

)
xk =

∑
k≥0

(
n

k

)
xk

2.4 Negative Binomial Theorem

(1− x)−t =
∑
n≥0

(
n+ t− 1

t− 1

)
xn
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3 Week 3

3.1 Coefficient Extraction

Given G(x) = g1x+ g2x
2 + · · ·+ gnx

n

[xk]G(x) = gk

Some Rules:

1. [xk]aF (x) + bG(x) = a[xk]F (x) + b[xk]G(x)

2. [xk](xℓF (x)) = [xk−ℓ]F (x)

3. [xk]F (x)G(x) =
∑k

ℓ=0([x
ℓ]F (X))([xk−ℓ]G(x))

3.2 Example of Generating Series

GivenM = { Jan, Feb, . . . , Dec }

Mn = {α ∈M, α has exactly n days},M =
⋃
n≥0

Mn

M0 = ∅,M28 = {Feb},M30 = {April, June, Sept, Nov }, . . .

3.3 Weight Function

Let A be a set. A function ω : A→ N from A to set N of natural numbers is a weight function
provided that all of n ∈ N, the set

An = ω−1(n) = {a ∈ A : ω(a) = n}

is finite. That is for every n ∈ N there are only finitely many elements a ∈ A of weight n.
Proposition:

ΦA(x) = a0 + a1x+ a2x
2 + · · · =

∞∑
n=0

anx
n

For every n ∈ N, the number of elements of A of weight n is an = |An|
Proposition:

ΦS(x) =
∑
n≥0

|{α ∈ S : ω(α) = n| · xn

3
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3.4 Sum and product Lemmas

Let S1 be disjoint sets and ω be a weight function of S1 ∪ S2

ΦS1(x) + ΦS2(x) = ΦS1∪S2(x)

Let S0, S1, S2, . . . be disjoint sets with union S and let ω be a weight function of S.

ΦS(x) =
∑
n≥0

ΦSn(x)

Let S1, S2 be sets and let ω1, ω2 be associated weight functions.

Φω1
S1
(x)Φω2

S2
(x) = Φω

S1×S2
(x)

where ω is a weight function on S1 × S2 defined by ω(α1, α2) = ω(α1) + ω(α2)
Lemma: Let A be a set with weight function: w : A → N and define A∗ and w∗ : A∗ → N as
above. Then w∗ is a weight function on A∗ if and only if there are no elements in A of weight zero
(that is A0 = ∅)

3.5 Star operator

A∗ = ∪k≥0A
k = {all tuples of elements of A}

For example,

3.6 String Lemma

Let A be a set with weight function ω such that no elements of A have weight 0. Then

Φw∗
A∗(x) =

1

1− Φω
A(x)

3.7 Composition

A composition is a finite sequence of positive integers

γ = (c1, c2, . . . , ck)

Each ci ∈ Z>0 is called a part. The length of the composition is the number of parts ℓ(γ) = k.
The size of the composition is the sum of parts, |γ| = c1 + c2 + · · ·+ ck. If s is the size of γ then
we say γ is a composition of s.

4



MATH 239: Intro to Combinatorics
Formula / Theorem Sheet

Fall 2024
by Strafe < 3

3.8 Composition Theorem

Let P = {1, 2, 3, . . . } be positive integers

• The set C of all combinations is C = P ∗

• The generating series for all integers compositions with respect to size is

Φcompositions(x) =
1− x

1− 2x
= 1 +

x

1− 2x

• For n ∈ N the number of compositions of size n is

|Cn| =

{
1 if n = 0,

2n−1 if n ≥ 1

5
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4 Week 4

4.1 Binary String

A binary string of length n ≥ 0 is a finite sequence σ = b1b2 . . . bn where each bit bi ∈ {0, 1}. A
binary string of length n is an element of the Cartesian power {0, 1}n. A binary string of arbitrary
length of the set {0, 1}∗ = ∪∞n=0{0, 1}n. One binary string ϵ of length zero, empty string with no
bits.

4.2 Concatenation Product

If S and T are sets of binary strings, then

ST = {σT : σ ∈ S, T ∈ T}

and Sk = SS . . . S

4.3 Regular Expression

A regular expression is defined recursively as any of the following

• ϵ, 0, or 1

• the expression R ⌣ S where R and S are regular expressions

• the expression RS where R and S are regular expressions with Rk = RR . . . R for any k ∈ N

• the expression R∗ where R is a regular expression

4.4 Rational languages

We define production recursively

• The regular expression ϵ, 0, 1 produces these sets {ϵ}, {0}, {1} respectively.

• If R produces R and S produces S then

– R ⌣ S produces R∪ S (set union)

– RS produces RS (concatenation product)

– R∗ produces R∗ = ∪k≥0Rk (concatenation powers)

4.5 Unambiguous expressions

A regular expression R is unambiguous if every string in the langaugeR produced by R is produced
in exactly one way by R. Otherwise, R is ambiguous.
Lemma:

• The regular expression ϵ, 0, 1 are unambiguous expressions

6
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• If R and S are unambiguous expressions that produces R and S respectively, then

– R ⌣ S is unambiguous iff R ∩ S = ∅ (disjoint)

– RS is unambiguous iff there is a bijection between RS and R × S. In other words, for
every string α ∈ RS, there is exactly one way to write α = ρσ with ρ ∈ R and σ ∈ S

– R∗ is unambiguous if and only if each of the concatenation product Rk is unambiguous
and all of the Rk are disjoint
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5 Week 5

5.1 Regular Expression and Rational Functions

A regular expression leads to a rational function, defined recursively as follows

• Regular expressions ϵ, 0, 1 leads to formal power series 1, x, x

• If R, S are regex that leads to f(x), g(x) then

– R ⌣ S leads to f(x) + g(x)

– RS leads to f(x) · g(x)

– R∗ leads to
1

1− f(x)

Theorem:
Let R be a regular expressions that unambiguously produces the language R. Also suppose that
R leads to f(x). Then the generating series for R with respect to length is f(x) i.e. ΦR(x) = f(x)

5.2 Block of a string

A block of a binary string s is a nonempty maximal substring of equal bits
Proposition:
The regular expression (0∗)(11∗00∗)∗1∗ is unambiguous and produces the set of all binary strings.
Same for 1∗(00∗11∗)∗0∗

5.3 Pre/postfix decompositions

A prefix decomposition has the form A∗B. A postfix decomposition has the form AB∗

5.4 Recursive decomposition

A recursive decomposion of a set S describes S in terms of itself using the language of regular
expressions together with the symbol S which produces set S. A recursive decomposition for S is
unambiguous if each side of the equation produces each string at most once.

5.5 Theorem 3.26

Let κ ∈ {0, 1}∗ be a non empty string of length n and let A = Aκ be the set of binary strings that
avoid κ. Let C be the set of all nonempty suffixes of γ of κ such that κγ = nκ for some nonempty
prefix n of κ. Let C(x) =

∑
γ∈C xℓ(κ) Then

A(x) =
1 + C(x)

(1− 2x)(1 + C(x)) = xn

5.6 Excluded substrings

Check course notes
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6 Week 6

6.1 Homogeneous Linear Recurrence Relations

Let g = (g0, g1, g2, . . . ) be an infinite sequence of complex numbers. Let a1, a2, . . . , ad be in C,
let N ≥ d be an integer. We say that g satisfies a homogeneous linear recurrence relation
provided that

gn + a1gn−1 + a2gn−2 + . . . adgn−d = 0

for all n ≥ N . The values g0, g1, . . . , gN−1 are the initial conditions of the currence. The relation
is linear because LHS is a linear combination of entries of the sequence g. It is homogeneous
because the RHS of equation is zero.

6.2 Theorem 4.8

Let g = (g0, g1, g2, . . . ) be a sequence of complex numbers and let G(x) =
∑∞

n=0 gnx
n be the

corresponding generating series. The following are equivalent

• The sequence g satisfies a homogeneous linear recurrence relation

gn + a1gn−1 + · · ·+ adgn−d = 0

for all n ≥ N with IC g0, g1, . . . , gN−1

• The series G(x) = P (x)/Q(x) is a quotient of two polynomials. The demoniator is

Q(x) = 1 + a1x+ a2x
2 + . . . adx

d

and the numerator is P (x0 = b0 + b1x+ b2x
2 + · · ·+ bN−1x

N−1 in which

bk = gk + a1gk−1 + · · ·+ adgk−d

for all 0 ≤ k ≤ N − 1 with the convention that gn = 0 for all n < 0

6.3 Partial fractions (Simple version)

Let that

G(x) =
P (x)

(1− λ1x)(1− λ2x) . . . (1− λsx)

where P is a polynomial of degree less than s, λi ∈ C are distinct. Then there exists C1, C2, . . . Cs ∈
C s.t.

G(x) =
C1

1− λ1x
+

C2

1− λ2x
· · ·+ Cs

1− λsx

To find Ci, cross-multiply and equate coefficients.
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6.4 More Partial Fractions

G(x) =
P (x)

Q(x)
=

P (x)

1− λ1x)d1(1− λ2x)d2 . . . (1− λsx)ds

where deg(P ) < deg(Q), the λi ∈ C are distinct and di ≥ 1. Then there exists C
(1)
1 , C

(2)
1 , . . . , Cd1

1 , C
(1)
2 , . . . , C

(2)
2 ,

. . . , C
(1)
s , . . . , Cds

s ∈ C s.t.

G(x) =

s∑
i=1

di∑
j=1

C
(j)
i

(1− λix)j

6.5 Main Theorem

Let g = (g0, g1, g2) be a sequence of complex numbers and G(x) =
∑∞

n=0 gnx
n be the corresponding

generating series. Assume that the equivlanet condiitons of Theorem 4.8 hold and that

G(x) = R(x) +
P (x)

Q(x)

for some polynomial P (x), Q(x), R(x) with deg(P (x)) < deg(Q(X)) and Q(0) = 1. Factor Q(x)
to obtain its inverse roots and their multiplicities

Q(x) = (1− λ1x)
d1(1− λ2x)

d2 . . . (1− λs)
ds

Then there are polynomials pi(n) for 1 ≤ i ≤ s with deg pi(n) < di such that for all n > degR(x)

gn = p1(n)λ
n
1 + p2(n)λ

n
2 + · · ·+ ps(n)λ

n
s

6.6 Theorem 4.18

Let g = (g0, g1, . . . ) be a sequence of complex numbers. The following are equivalent,

• The sequence g satisfies a homogeneous linear recurrence relation (with IC)

• The sequence g satisfies a possibly inhomogeneous linear recurrence relation (with IC) in
which the RHS is an eventually polyexp function

• The generating series G(x) =
∑

n=0 gnx
n is a rational function (a quotient of polynomials in

x)

• The sequence g = (g0, g1, g2, . . . ) is an eventually polyexp function

6.7 Generating Series Theorem

Let G(x) =
∑

n≥0 gnx
n be a generating series. The following are equivalent

1. The sequence g0, g1, . . . satisfies the homogeneous linear recurrence relation

gn + a1gn−1 + · · ·+ adgn−d = 0

for all n ≥ N with initial conditions g0, g1, . . . , GN−1

10
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2. G(x) = P (x)/Q(x) where

P (x) = b0 + b1x+ b2x
2 + . . . bN−1x

N−1

Q(x) = 1 + a1x+ a2x
2 + · · ·+ adx

d︸ ︷︷ ︸
auxiliary polynomial

and
bk = gk + a1gk−1 + · · ·+ adgk−d

for all 0 ≤ k ≤ N − 1 with the convention gn = 0 for all n < 0

6.8 Recurrence Relation to Explicit Formula Theorem

Suppose g0, g1, . . . is a sequence satisfying recurrence relation

gn + a1gn−1 + · · ·+ adgn−d = 0

Factor the auxiliary polynomial to obtain the “inverse roots” λi ∈ C (distinct) and their multi-
plicities

1 + a1x+ a2x
2 + · · ·+ adx

d︸ ︷︷ ︸
auxiliary polynomial

= (1− λ1x)
d1(1− λ2x)

d2 . . . (1− λsx)
ds

Then
gn = p1(n)λ

n
1 + p2(n)λ

n
2 + · · ·+ ps(n)λ

n
s

where each pi is a polynomial of degree less than di

6.9 Graph

A graph consists of a finite non-empty set V (G) of objects called vertices and a set of E(G) of
edges which are unordered pairs of distinct verticies.
Terminologies:

• Two verticies u, v are adjacent if {u, v} is an edge

• If e = {u, v} is an edge, edge e is an incident with vertices u, v

• The vertices adjacent to vertex v are called neighbours of v

• Set of neighbor of v is denoted N(v)

We can use e = uv to represent an edge e = {u, v}. Edges are unordered (undirected) so e = uv =
vu

7 Week 7

7.1 Isomorephic

Two graphics G1, G2 are isomorphic if there exists a bijection f : V (G1)→ V (G2) such that u, v
are adjacent in G1 iff f(u), f(v) are adjacent in G2.

11
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7.2 Degree

The degree of a vertex v in a graph G is the number of edges incident with v and is denoted as
deg(v), degG(v). Degree is also the size of the neighbours deg(v) = |N(v)|

7.3 Handshake Lemma

For every graph G, we have ∑
v∈G

deg(v) = 2|E(G)|

Corollary The number of vertices of odd degree in a graph is even
Corollary The average degree of vertex in the graph G is

2|E(G)|
|V (G)|

A graph in which every vertex has degree k is called a k - regular graph.
The number of edges is nk/2

7.4 Complete Graph

A complete graph is one in which all pairs of distinct vertices are adjacent. It’s degree is
|V (G)| − 1. The complete graph on n vertices is denoted Kn.
The number of edges is n(n− 1)/2 =

(
n
2

)

12
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8 Week 8

8.1 Bipartite Graph

A graph is bipartite if its vertex set can be partitoned into two disjoint sets A,B such that
B = A ∪B and every edge in G has one endpoint in A and one endpoint in B.

8.2 Complete Bipartite Graph

For positive integers m,n, the complete bipartite graph Km,n in the graph with bipartition A,B
where |A| = m, |B| = n, containing all possible edges joining vertices in A with vertices in B.

8.3 n-cube (Hypercube)

For n ≥ 0, the n-cube is the graph whose vertex set contains of all binary string of length n and two
vertices (strings) are adjacent if and only if they differ in exactly one position. Characteristics:

• Number of Vertices: 2n

• n-regular (can get neighbour of s by changing one position of s)

• Number of edges = n2n−1

• It is bipartite

8.4 Adjaceny Matrix

The adjacency matrix of a graph with vertices {v1, . . . , vn} is the n× n matrix A where

Ai,j =

{
1 if vi, vj are adjacent

0 o.w.

For simple graphs, A is symmetric and its diagonal is 0.

8.5 Incidence Matrix

The incidence matrix of a graph with vertices {v1, . . . , vn} and edges {e1, . . . , em} is the n × n
matrix B where

Bi,j =

{
1 if vi are incident with ej

0 o.w.

Each column column contains exactly two 1’s (connecting two nodes) and each row sums to the
degree of the vertex.

13
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8.6 Subgraph

A graph H is a subgraph of a graph G if the vertex set of H is a non-empty subset of vertex
set of G(V (H) ⊆ V (G)) and the edge of H is a subset of edge set G(E(H) ⊆ E(G)) where both
endpoints of any edge in E(H) are in V (H). If V (H) = V (G), we call H a spanning graph. If
H ̸= G, H is a proper subgraph.

8.7 Walk and Path

A u, v-walk is a sequence of alternating vertices and edges v0, v0v1, v1, v1v2, v2, . . . , vk−1, vk−1vk, vk
where u = v0, v = vk. The walk has length k. Such a walk is closed if v0 = vk.
A u, v-path is a u, v-walk with no repeated vertices. We can have the trivial empty path (walk
length 0)
Theorem: If there is a u, v-walk in G, then there is a u, v-path in G.
Corollary: If there is a u, v-path and a v, w-path in G, then there is a u,w-path in G.

8.8 Cycle

A cycle of length n ≥ 1 is a subgraph with n distinct vertices v0, v1, . . . , vn−1 and n distinct edges
v0v1, v1v2, . . . , vn−1v0
Theorem: If every vertex in G has degree of at least 2, then G contains a cycle.
Hamiltonian Cycle: A cycle that is a spanning subgraph (visits all vertices)

8.9 Girth

The girth of a graph is the length of the shortest cycle. If G has no cycle, the girth is ∞.

8.10 Connected

A graph is connected if there exists a u, v-path for every pair of vertices u, v.
Theorem: Let G be a graph and let u ∈ V (G). Then G is connected if and only if a u, v-path
exists for every v ∈ V (G)

8.11 Component

A component C of a graph is a connected subgraph of G such that C is not a proper subgraph of
any other connected subgraph of G.

• A disconnected graph has at least 2 components

• A graph with exactly 1 component is connected

• A connected graph has exactly 1 component

• There are no edges joining a vertex of a component with a vertex outside that component
(otherwise it is not a maximal connected subgraph)

14
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9 Week 9

9.1 Cut Induced

Let X ⊂ V (G). The cut induced by X in G is the set if all edges in G with exactly one end in X.
Theorem: A graph G is disconnected iff there exists a non-empty property subset of X of V (G)
such that the cut induced by X is empty.

9.2 Eulerian Circuits

An eulerian circuit (Euler tour) of a graph G is a closed walk that contains every edge of G exactly
once. Properties:

• Not necessarily connected

• Every vertex must have even degree. Each time we visit a vertex, we must go in and out
using distinct edges.

Theorem: Let G be a connected graph. Then G has an eulerian circuit if and only if every vertex
has even degree.

9.3 Bridge

A bridge (cut-edge) is an edge e of G if G− e has more components than G.
Lemma: If e = xy is a bridge in a conneted graph G, then G − e has exactly two components,
and x and y are in different components of G− e.
Theorem: An edge e is a bridge of G iff it is not contained in any cycle of G.
Corollary: If there are two distinct paths from u→ v in G, then G contains a cycle.

9.4 Tree

A tree is a connected graph with no cycles.
A forest is a graph with no cycles.
Lemma: Every edge in a tree or forest is a bridge
Lemma: Let x, y be vertices in a tree T . Then there exists a unique x, y-path in T .
Theorem: If T is a tree then |E(T )| = |V (T )| − 1

9.5 Leaf

A leaf is a vertex of degree 1
Theorem: If T is a tree with at least two vertices, then it has at least 2 leaves. Lemma: Every
tree is bipartite

15
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9.6 Spanning Tree

A spanning tree of G is a spanning subgraph of G that is a tree. In other words V (T ) =
V (G), E(T ) ⊆ E(G), T is a tree.
Theorem: A graph G is connected iff G has a spanning tree.
Corollary: If G is a connected graph with n vertices and n− 1 edges, then G is a tree.
Corollary: Let G be a graph with n vertices. If any of the following 3 condition holds, then G is
a tree

• G is connected

• G has no cycles

• G has n− 1 edges

9.7 Characterizing Bipartite Graphs Theorem

A graph is bipartite iff it has no odd cycles

9.8 Planarity

A planar embedding of a graph G is a drawing of the graph in the plane so that its edges i ntersect
only at the ends (edges don’t cross) and no two vertices occupy the same point. A graph with a
planar embedding is called a planar.

9.9 Face

A face of a planar embedding is an undivided region of the plane
The boundary of a face is the subgraph formed from all vertices and edges that touch the face.
Two faces are adjacent if their boundaries have at least one edge in common.
For a planar embedding of a connected graph, the boundary walk of a face is a closed walk once
around the perimeter of the face boundary. The degree of a face f is the length of the boundary
walk of the face, denoted deg(f).

9.10 Handshake Lemma for Faces

Let G be a planar graph with a planar embedding where F is the set of all faces. Then∑
f∈F

deg(f) = 2|E(G)|

Lemma: In a planar embedding, an edge is a bridge iff the two sides of e are in the same face
Jordan Curve Theorem: Every planar embedding of a cycle separates the plane into two
regions, one on the inside and one on the outside.

16
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9.11 Euler’s Formula

Let G be a connected graph with n vertices and m edges. Every planar embedding of G has f
faces, where n−m+ f = 2

9.12 Platonic Graph

A graph is platonic if it has a planar embedding in which every vertex has degree d ≥ 3 and every
face has degree d∗ ≥ 3.
Theorem: There are exactly 5 platonic graphs.

9.13 Nonplanar Graph

Lemma: Let G be a planar graph with n vertices and m edges. If there is a planar embedding of

G where every face has degree at least d ≥ 3, then m ≤ d(n− 2)

d− 2
Lemma: Let G be a planar graph with n ≥ 3 vertices and m edges. Then m ≤ 3n− 6.
Lemma: If G contains a cycle, then in any planar embedding of G, every face boundary contains
a cycle.
Corollary: K5,K3,3 is not planar.
Theorem: Let G be a bipartite planar graph with n ≥ 3 vertices and m edges. Then m ≤ 2n− 4

9.14 Edge Subdivision

An edge subdivision of G is obtained by replacing each edge of G with a new path of length at
least 1.
fact: A graph is planar iff any edge subdivision of the graph is planar
Corollary: If G contains an edge subdivision of K3,3,K5 as a subgraph, then G is not planar.

9.15 Kuratowski’s Theorem

A graph is planar iff it does not contain an edge subdivision of K3,3,K5 as a subgraph.
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10 Week 10

10.1 Colouring

A k colouring of a graph G is an assignment of a colour to each vertex using one of k colours,
so that adjacent vertices have different colours. More precisely, if C is a set of size k, then a
k-colouring is a function f : V (G) → C such that f(u) ̸= f(v) for all uv ∈ E(G). A graph that
has k−coloruing is called k-colourable.

10.2 Colour Theorem

Theorem: A graph is 2-colourable iff it is bipartite
Theorem: The complete graph Kn is n-colourable and not k-colourable for any k < n
Lemma: Every planar graph has at least 1 vertex of degree at most 5

10.3 4/5/6-colour theorem

Every planar graph is 4/5/6-colourable.

10.4 Contracting

Let e be an edge in graph G. The graph G/e formed by contracting e = uv removes e and squeezes
the two ends of e into one vertex, preserving all edges incident with either end.

10.5 Matching

A matching of a graph is a set of edges in which no two edges share a common vertex.

10.6 Saturated

In a matching M , a vertex is saturated by M if v is incident with an edge in M .

10.7 Perfect matching

A matching is a perect matching if it saturates every vertex

10.8 Cover

A cover of a graph G is a set of vetices C such that every edge of G has at least one endpoint in
C.
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10.9 Cover Lemmas

Lemma: If M is a matching of G and C is a cover of G then |M | ≤ |C|
Lemma: If M is a matching and C is a cover and |M | = |C|, then M is a maximum matching
and C is a minimum cover.
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11 Week 11

11.1 Alternating / Augmenting Path

An alternating path P with respect to a matching M is a path where consecutive edges alternate
between being in M and not in M . An augmenting path is an alternating path that starts and
ends with distinct unsaturated vertices.

11.2 Lemma

If a matching M has an augmenting path, then M is not maximum.

11.3 Konig’s Theorem

In a bipartite graph, the size of a maximum matching is equal to the size of a minimum cover.

11.4 The Bipartite Matching Algorithm (X-Y Construction)

Given a bipartite graph G with bipartition (A,B) and a matching M of G.

1. Let X0 be the set of all unsaturated vertices in A

2. Set X ← X0, Y ← ∅

3. Let N be the set of all neighbours of X in B not currently in Y

• If at least one vertex v ∈ N is unsaturated, then we have found an augmenting path.
Make a larger matching by swapping edges in the augmenting path. Then start over
step 1

• If all vertices in N are saturated then put all of them in Y . Add their matching
neighbours to X. Go to step 3

• IF no such neighbour vertices (|N | = 0), then stop. The matching is maximum, and
the minimum cover is Y ∪ (A\X)

Corollary: Let G be a bipartite graph onm edges with bipartition (A,B) such that |A| = |B| = n.
Then G has a matching size of at least m/n.

11.5 Hall’s Theorem

A bipartite graph G with bipartition (A,B) has a matching saturating every vertex in A iff every
subset D ⊆ A satisfies |N(D)| ≥ |D|

11.6 Corollary

A bipartite graph G with bipartition (A,B) has a perfect matching if and only if |A| = |B| and
every subset D ⊆ A satisfies |N(D)| ≥ |D|

20



MATH 239: Intro to Combinatorics
Formula / Theorem Sheet

Fall 2024
by Strafe < 3

11.7 Theorem

If G is a k−regular bipartite graph with k ≥ 1, then G has a perfect matching

11.8 Edge-colourings

An edge k-colouring of a graph G assigns one of k colors to each edge of G such that two edges
incident with the same vertex are assigned different colors.

11.9 Theorem

Every bipartite graph with maximum degree ∆ has an edge ∆-colouring

11.10 Lemma

Let G be a bipartite graph having at least one edge. Then G has a matching saturating every
vertex of maximum degree.
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