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1 Week 1

1.1 Partition

A partition Pn for interval [a, b] is a finite sequence of increasing number of the form

a = t0 < t1 < t2 < · · · < tn−1 < tn = b

Partition subdivides [a,b] into n subintervals (does NOT need to be regular)

[t0, t1], [t1, t2], . . . , [tn−1, tn]

1.2 Riemann Sum

Given a BOUNDED function f on [a,b] a partition Pn on [a,b] and a set of {c1, c2, . . . , cn} where

ci ∈ [ti−1, ti] then a Riemann Sum for f with respect to P is given by

Sn =

n∑
i=1

f(ci)∆ti

1.3 Integrability

A function is integrable on [a,b] if there exists a unique number I ∈ R s.t. for any sequence of

partition {Pn} with limn→∞ ∥Pn∥ = 0 and any sequence of Riemann Sums {Sn} associated with Pn

we have

lim
n→∞

Sn = I

Denoted by integral of f over [a, b] and denoted by∫ b

a

f(x)dx = lim
n→∞

Sn = I

Note: Can also be true if there are a FINITE amount of discontinuities

1.4 Integrability Theorem

If f is continuous on [a, b] then F is integrable on [a, b]

1.5 Regular Partition

Subintervals with the same length denoted by

∆t =
b− a

n
and ti = t0 + i∆t
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1.6 Right Hand Riemann Sum

Rn =

n∑
i=1

f(ti)∆t

Equivalent definition for left-hand and midpoint Riemann Sum ti−1, ti−1/2. And if f is integrable

then, ∫ b

a

f(x)dx = lim
n→∞

Rn

1.7 Properties

• ∀c ∈ R,
∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx

•
∫ b

a
f(x) + g(x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

• ∀x ∈ [a, b],m ≤ f(x) ≤ M =⇒ m(b− a) ≤
∫ b

a
f(x)dx ≤ M(b− a)

• f(x) ≥ 0 =⇒
∫ b

a
f(x)dx ≥ 0

• f(x) ≥ 0 =⇒
∫ b

a
f(x)dx ≥ 0

• f(x) ≤ g(x) =⇒
∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx

• |f(x)| is integrable on [a,b], and |
∫ b

a
f(x)dx| ≤

∫ b

a
|f(x)|dx

• f(a) is defined =⇒
∫ a

a
f(x)dx = 0

• f is integrable on [a, b] =⇒
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx

• ∀a, b, c ∈ I, f is integrable on I =⇒
∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx

1.8 Average Value

If f is continuous on [a, b], the average value of f on [a, b] is defined as

favg =
1

b− a

∫ b

a

f(x)dx

1.9 Average Value Theorem

If f is continuous on [a, b]. There exists c ∈ [a, b] s.t.

f(c) =
1

b− a

∫ b

a

f(x)dx
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2 Week 2

2.1 FTC I

If f is continuous on an open interval I containing x = a and if

G(x) =

∫ x

a

f(t)dt

then G is differentiable for all x ∈ I and G′(x) = f(x) s.t.

G′(x) =
d

dx

∫ x

a

f(t)dt = f(x)

2.2 Indefinite Integral

The collection for all antiderivative of f(x) is denoted by∫
f(x)dx = F (x) + c

where c ∈ R and F is an antiderivative.

2.3 Common anti-derivative

2.4 FTC II

If f is continuous on [a,b] and F is any antiderivative of f then,∫ b

a

f(x)dx = F (b)− f(a) = [F (x)]ba

2.5 Corollary: Extended Version of FTC

If f is continuous and g and h are differentiable then,

d

dx

[∫ h(x)

g(x)

f(t)dt

]
= f(h(x))h′(x)− f(g(x))g′(x)
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2.6 Change of variable / Substitution

If g′(x) is continuous on [a, b] and f(x) is ALSO CONTINUOUS between g(a) and g(b) then,∫ x=b

x=a

f(g(x))g′(x)dx =

∫ u=g(b)

u=g(a)

f(u)du

3 Week 3

3.1 Trig Substitution

• Remember to add the a2 to the x sub

• Recalculate lower bound and upperbound

3.2 Integration by Parts

3.3 Partial Fractions
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4 Week 4

4.1 Type I Improper Integral

Let f be integrable on [a, b] for all a ≤ b.∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx

∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx∫ ∞

−∞
f(x)dx = lim

a→−∞

∫ 0

a

f(x)dx+ lim
b→∞

∫ b

0

f(x)dx

The integrals converge if all of the limits exist. It diverges even if ONE limit is DNE.

4.2 p-test for Integrals ∫ ∞

1

1

xp
dx ⇐⇒ p > 1

p > 1 =⇒
∫ ∞

1

1

xp
dx =

1

p− 1

4.3 Properties of Type I improper Integrals

Suppose that
∫∞
a

f(x)dx and
∫∞
a

g(x)dx converge.∫ ∞

a

cf(x)dx converges for any c ∈ R =⇒
∫ ∞

a

cf(x)dx = c

∫ ∞

a

f(x)dx

∫ ∞

a

f(x) + g(x)dx converges =⇒
∫ ∞

a

f(x)g(x)dx =

∫ ∞

a

f(x)dx+

∫ ∞

a

g(x)dx

∀x ≥ a, f(x) ≤ g(x) =⇒
∫ ∞

a

f(x)dx ≤
∫ ∞

a

g(x)dx

a < c < ∞ =⇒
∫ ∞

a

f(x) converges and

∫ ∞

a

f(x)dx =

∫ c

a

f(x)dx+

∫ ∞

c

f(x)dx

4.4 Comparison Test for Type I Improper Integrals

Suppose f and g are continuous functions where f(x) ≥ g(x) ≥ 0 for x ≥ a

1) If
∫∞
a

f(x)dx converges,
∫∞
a

g(x)dx converges too

2) If
∫∞
a

g(x)dx diverges,
∫∞
a

f(x)dx diverges too

Note: f(x) ≥ g(x) ≥ 0

4.5 Absolute Convergence Theorem (ACT)

Let f be integrable on [a,b] for all b ≥ a. Then |f | is integrable on [a, b] for all b ≥ a and if
∫∞
a

|f(x)|
converges, so does

∫∞
a

f(x)dx.

Note: if |f(x)| ≤ g(x) for x ≥ a and if
∫∞
a

g(x)dx converges so does
∫∞
a

f(x)dx
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4.6 Type II Improper Integral

Consider
∫ b

a
f(x)dx

If there is a discont at x = a then we use limt→a+

∫ b

t
f(x)dx

If there is a discont at x = b then we use limt→b−
∫ t

a
f(x)dx

If f is not continuous at some c ∈ (a, b) then we can split it up into
∫ c

a
f(x)dx+

∫ b

c
f(x)dx and reconsider

the previous cases

4.7 Area Between Curves ∫ b

a

|f(x)− g(x)|dx

”Upper” - ”Lower”

Can also compute areas when x is a function of y, ”outer” - ”inner” or ”right” - ”left”
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5 Week 5

5.1 Disk / Washer General Formula

V =

∫ b

a

π(f(x)2 − g(x)2)dx

Note: if rotating around a horizontal line that’s not the x-axis, (a− f(x)) or (f(x)− a)

5.2 Cylindrical Shells General Formula

V =

∫ b

a

2πx(f(x)− g(x))dx

Note: if rotating around a vertical line that’s not the y-axis, |x− a|

5.3 Ordinary Differential Equation (ODE)

An equation containing derivatives of a dependent variable y = f(x)

F (x, y, y′, y′′, . . . , y(n)) = 0

5.4 Order of ODE

The highest derivative that appears e.g. y′ + y′′ + y′′′ = 0, order = 3

5.5 Lineararity of ODE

An ODE is linear if it contains only linear functions in y, y′, y′′

5.6 General Solution of ODE

Collection of all possible solutions including arbitrary constant

5.7 Particular Solution

A solution in which all arbitrary constants have been determined. Initial value problem (IVP) is an

ODE that comes with initial conditions.

5.8 Direction field

Consider the ODE
dy

dx
= f(x, y)

It tells us how the slope of the tangent line behaves at each point (x, y)
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6 Week MT

6.1 Separable ODE

It is a first order ODE that is written as

dy

dx
= g(y)h(x)

That is we can factor the right-hand side into a product of functions into∫
1

g(y)
dy =

∫
h(x)dx

6.2 Substitution Method

Sometimes, it is not separable, but substitution makes it separable.

Common substitutions: v = y + x, v =
y

x
, v = y′

6.3 Linear first-order ODE

General form is

A(x)
dy

dx
+B(x)y + C(x), A(x) ̸= 0

By dividing A(x), we can write it as

dy

dx
+ P (x)y = Q(x)

6.4 Algorithm to Solve linear first-order ODE

1. Write ODE in form of
dy

dx
+ P (x)y = Q(x)

2. Find µ(x) = e
∫
P (x)dx

3. Multiply the ODE by µ(x) to collapse LHS into
d

dx
(µ(x)y)

4. Integrate both sides and solve for y

General Formula to ODE
dy

dx
+ P (x)y = Q(x)

y =
1

µ(x)

(∫
µ(x)Q(x)dx

)
, µ(x) = e

∫
P (x)dx

6.5 Existence and Uniqueness Theorem for First-Order Linear Differential

Equations

Assume P and Q are continuous functions on an interval I. Then for each x0 ∈ I and for all y0 ∈ R,
the IVP

y′ + P (x)y = Q(x)

y(x0) = y0

has exactly one solution y = γ(x) on interval I

— MID TERM CUTOFF —
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6.6 Newton’s Law of Cooling

T is the object’s temperature, Ta is the ambient temperature

dT

dt
= −k(T − Ta), k > 0

6.7 Natural growth

dP

dt
= kP, k > 0

6.8 Logistic growth

dP

dt
= kP

(
1− P

M

)
, k,M > 0

where M is the carrying capacity
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7 Week 6

7.1 Infinite series

Let {an}∞n=1 be a sequence. An infinite series is an expression of the form

a1 + a2 + a3 + a4 + · · · =
∞∑

n=1

an

7.2 Sequence of partial sums

If
∑∞

n=1 an is a series, then the sequence of partial sums {Sn}

Sn = a1 + a2 + · · ·+ an

7.3 Convergence and Divergence

A series
∑∞

n=1 an converges to S ∈ R if limn→∞ Sn = S S is called the sum of the series. If {Sn}
diverges, we say the series diverges.

7.4 Geometric Series
∞∑

n=0

rn = 1 + r + r2 + . . . , r ∈ R

7.5 Geometric Series Test

The geometric series
∑∞

n=0 r
n converges if |r| < 1 and diverges otherwise. If |r| < 1,

∞∑
n=0

rn =
1

1− r

7.6 Properties

Suppose
∑∞

n=1 an = A and
∑∞

n=1 bn = B Then,

1.
∑∞

n=1 an = kA

2.
∑∞

n=1 an ± bn = A±B

3. If
∑∞

n=1 an converges, then
∑∞

n=j an also converges for each j ≥ 1

4. If
∑∞

n=j an converges for some j, then
∑∞

n=1 an also converges.

(Note: also applies for starting with n = 0 for 3 and 4).

7.7 Divergence Test

If limn→inf an ̸= 0 (or DNE) then,
∑∞

n=1 an diverges.

(Contrapositive: If
∑∞

n=1 an converges, limn→∞ = 0)
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8 Week 7

8.1 Series Positive

A series
∑∞

n=1 an is called positive if an ≥ 0 for n ∈ N

8.2 Integral Test

Suppose f(x) is

• continuous

• positive

• decreasing

for x ∈ [1,∞) and let an = f(n). Then,∑∞
n=1 an converges if and only if

∫∞
1

f(x)dx converges.

8.3 Theorem: p-series Test

The series
∑∞

n=1

1

np
converges if and only if p > 1

8.4 Remainder

The remainder is the error in using Sn to approximate
∑∞

n=1 an = S so

Rn = S − Sn = an+1 + an+ 2 + . . .

If an = f(n) and f(x) is continuous, positive and decreasing, we know that∫ ∞

n+1

f(x)dx ≤ Rn ≤
∫ ∞

n

f(x)dx

so we get an upper bound on the remainder.

8.5 Comparison Test

Suppose 0 ≤ an ≤ bn for n ∈ N then,

1.
∑

bn converges, then
∑

an converges too

2.
∑

an diverges, then
∑

bn diverges too

8.6 Limit Comparison Test (LCT)

Suppose an ≥ 0 and bn > 0 for n ∈ N and limn→∞
an
bn

= L Then,

1. 0 < L < ∞:
∑

an and
∑

bn both converges of both diverges.

2. L = 0:
∑

bn converges then
∑

an converges

3. L = 0:
∑

an diverge then
∑

bn diverge

4. L = ∞:
∑

an converges then
∑

bn converges

5. L = ∞:
∑

bn diverges then
∑

an diverges
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8.7 Alternating Series

The terms are alternating positive and negative

8.8 Alternating Series Test (AST)

Suppose an > 0 for all n ∈ N Consider
∑∞

n=1(−1)n+1an If

1. {an} is non increasing (eventually) an ≥ an+1

2. limn→∞ an = 0

Then
∑∞

n=1(−1)n+1an converges.

8.9 Estimating Sums of Alt Series

• Check if series
∑∞

n=1(−1)n+1an is converging by AST

• This means the actual sum lies between any two consecutive partials sums so the error satisfies

|Rn| = |S − Sn| ≤ |Sn+1 − Sn| = | ± an+1| = an+1

• That is the error in using Sn is bounded above |Rn| ≤ an+1
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9 Week 8

9.1 Absolute Convergence

A series converges if
∑∞

n=1 |an| converges. Functions that are ≥ 0 there have no differences.

9.2 Conditional Convergence

A series conditionally converges if it does not converge absolutely but converges.

9.3 Absolute Convergence Theorem (ACT)

If
∑∞

n=1 |an| converges, so does
∑∞

n=1 an.

Note: it will converge to different values.

9.4 Steps to approach problem

1. Try Divergence Test

2. check for Absolute Convergence

3. check for Conditional Convergence

9.5 Rearrangement

Assume a series has sum S

If it absolutely converges, if we rearrange, it will have sum S.

If it conditionally converges, if we rearrange, it will have a different value. (Riemann Rearrangement

Theorem)

9.6 Ratio Test

Check limn→∞

∣∣∣∣an+1

an

∣∣∣∣ = L. And L ∈ R or L = ∞

• L < 1 Absolutely Converges

• L = 1 Inconclusive

• L > 1 Diverges

9.7 Root Test

Check limn→∞
n

√∣∣∣∣an+1

an

∣∣∣∣ = L. And L ∈ R or L = ∞

• L < 1 Absolutely Converges

• L = 1 Inconclusive

• L > 1 Diverges
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10 Week 9

10.1 Power Series
∞∑

n=0

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + . . .

10.2 Series Convergence∑∞
n=0 an(x− a)n there are a few possibilities:

1. The series converges only when x = a (R = 0)

2. The series converges for all x ∈ R (R = ∞)

3. There exists R ∈ (0,∞) such that it converges absolutely for |x − a| < R, and diverges if

|x− a| > R and unknown if |x− a| = R.

10.3 Abel’s Theorem

If f(x) =
∑∞

n=0 an(x− a)n has an interval of convergence I then f is continuous on I.

10.4 Integral and Differentiation

If f(x) =
∑∞

n=0 an(x−a)n with radius of convergence R > 0, then f(x) is differentiable on (a−R, a+R)

and

1. f ′(x) =
∑∞

n=1 nan(x− a)n−1

2.
∫
f(x)dx =

∑∞
n=0

an(x− a)n+1

n+ 1
+ C

Note: radius stays the same but interval of converge may change at endpoints.

10.5 Proposition

ex =

∞∑
n=0

xn

n!
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11 Week 10

11.1 n-th degree Taylor Polynomial centered at x = a

Tn,a(x) =

∞∑
k=0

f (k)(a)

k!
(x− a)k

11.2 Taylor’s Theorem

Suppose f is (n + 1) times differentiable throughout an interval I containing a. For every x ∈ I, the

error in approximating f(x) with Tn,a(x) has the form of

Rn,a(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x.

11.3 Taylor’s Inequality

Suppose f is (n+1) times differentiable throughout an interval I containing a. If x ∈ I and |f (n+1)(c)| ≤
M for all c between a and x.

|Rn,a(x)| ≤
M |x− a|n+1

(n+ 1)!

11.4 * Taylor Series

Assume f has derivatives of all order at a ∈ R, we say the following is a taylor series centered at x =

a,

f(x) ≈
∞∑

n=0

f (n)(a)

n!
(x− a)n

Note : Theorem assumes that f has a power series and it conclude thats it is a Taylor Series. Does

NOT say every function is equal to its taylor series. Also, no matter how the series is found, you will

get a Taylor’s Series.

11.5 Maclaurin series

f(x) =

∞∑
n=0

f (n)(0)

n!
xn

11.6 Function equal to their Taylor series for all x

f(x) = lim
n→∞

Tn,a(x)

Since f(x) = Tn,a(x) +Rn,a(x). Check

lim
n→∞

Rn,a(x) = 0

11.7 * Convergence of Taylor Series

Suppose f has derivatives of all orders of an interval I containing x = a. If there exists a constant

M ∈ R with |f(n)(x)| ≤ M for all n ∈ N and all x ∈ I then,

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n,∀x ∈ I
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11.8 Corollary

sin(x), cos(x) are equal to their Taylor series for all x ∈ (−∞,∞)
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12 Week FE

12.1 Binomial Theorem

Let k ∈ N, then for all x ∈ R

(1 + x)k =

k∑
n=0

(
k

n

)
xn

where (
k

n

)
=

k!

n!(k − n)!
=

k(k − 1) . . . (k − n+ 1)

n!

12.2 Binomial Theorem as a Maclarin Series

R = 1, I ∈ (−1, 1)

∀x ∈ (−1, 1), (1 + x)k =

k∑
n=0

(
k

n

)
xn

12.3 Claims

Let f(x) =
∑k

n=0

(
k
n

)
xn

1.
(

k
n+1

)
(n+ 1) +

(
k
n

)
n =

(
k
n

)
k for n ≥ 1

2. f ′(x) + xf ′(x) = kf(x) for all x ∈ (−1, 1)

3.

(
f(x)

(1 + x)k

)′

= 0 for all x ∈ (−1, 1)

12.4 Generalized Binomial Theorem

Let k ∈ R, then for all x ∈ (−1, 1)

(1 + x)k =

∞∑
n=0

(
k

n

)
xn

where (
k

n

)
=

k!

n!(k − n)!
=

k(k − 1) . . . (k − n+ 1)

n!
,

(
k

0

)
= 1
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13 Important Representations to remember

13.1 Series

• sin(x) =
∑∞

n=0

(−1)nx2n+1

(2n+ 1)!
(R = ∞)

• cos(x) =
∑∞

n=0

(−1)nx2n

(2n)!
(R = ∞)

• ex =
∑∞

n=0

xn

n!
(R = ∞)

•
1

1− x
=

∑∞
n=0 x

n(R = 1)

• (1 + x)k =
∑∞

n=0

(
k
n

)
xn(R = 1)
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