CS 246: Object-Oriented Software Development

Jason Hon
Spring 2024, University of Waterloo

Caroline Kierstead

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
Contents
1 Lecture 1
0 6
2 Lecture 2 7
2.1 Function Overloading 7
2.2 Error Handling 7
2.3 Formatting I/Oo 9
2.4 Strings e 9
3 Lecture 3 11
3.1 Strings 11
3.2 Streamso e 11
3.3 Files . . . o o e 11
3.4 File Stream 12
3.5 String Streams L Lo 12
3.6 Command line arguments Lo 13
4 Lecture 4 15
4.1 Overloading L e 15
4.2 Print Suite 15
4.3 Structures L 16
4.4 Constants oL e e 17
4.5 Parameter Passing L 18
5 Lecture 5 19
5.1 Left Value and Right Value 19
5.2 Lvalue Referencing L 19
5.3 Choice of Mechanismo 20
5.4 Dynamic Memory Allocation 22
6 Lecture 6 24
6.1 Dynamic Memory Allocation 24
6.2 Returning Information oL oo 24
6.2.1 Return by value L 24
6.2.2 Return by pointero 25
6.2.3 Return by reference L 25
6.3 Operator overloading L 26

6.4 Separate Compilation 27

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
7 Lecture 7 29
7.1 Seperate Compilation (cont’) oo oo 29
7.2 Module Compilation 31
7.3 Classes v v i e e e e 31
8 Lecture 8 34
8.1 Member Initialization List (MIL) 34
8.2 Copy Constructor 36
9 Lecture 9 40
9.1 Copy Constructor (cont’) 40
9.2 Destructors Addendum 41
9.3 Single Parameter Constructors 41
9.4 Copy Assignment operator 42
9.5 Copy and Swap Idiom 43
10 Lecture 10 43
10.1 Move Semantics oo e e e 43
10.2 Member Operators o o i e e 46
11 Lecture 11 47
11.1 Object ATTays o o o v v i 47
11.2 Constant Objects e 47
11.3 Comparing Objects o o e e e 49
11.4 Invariants and encapsulation L 51
12 Lecture 12 52
12.1 Encapsulation (cont’) 52
12.2 Tterators o o e e 53
12.3 Friend e e e 54
13 Lecture 13 55
13.1 Encapsulation and Friendship (cont’) 55
13.2 System Modeling L e 56
14 Lecture 14 59
14.1 System Modeling (Cont’) 59
14.2 Inheritance L 59
15 Lecture 15 65
15.1 Polymorphism e 65

15.2 Abstract Base Classes (ABC) 65

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
15.3 Templates L oL e e 66
16 Lecture 16 70
16.1 Templates (cont’) 70
16.2 Observer Design Pattern o 71
16.3 Decorator Design Pattern o oo 73
17 Lecture 17 75
17.1 Modularization e 75
17.2 Decoupling Interfaces (MVC) 7
17.3 Exception L 77
18 Lecture 18 79
18.1 Exception (cont’) 79
18.2 Smart Pointers 81
19 Lecture 19 84
19.1 Smart Pointers (cont’) 84
19.2 Map o o 85
19.3 Inheritance and the Big 5 86
20 Lecture 20 88
20.1 Inheritance and the Big 5 (cont’) o oL 88
20.2 Casting 90
21 Lecture 21 92
21.1 Static Fields and Methods 92
21.2 Factory Method 92
21.3 Template Method 94
22 Lecture 22 96
22.1 Exception Safety 96
22.2 Exception Safety and std::vector 97
22.3 Template Functions e 98
23 Lecture 23 100
23.1 STL Algorithms (cont’) 100
23.2 Lambdas 102
23.3 Tterator Libraryo 102
23.4 Casting 102

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
24 Lecture 24 105
24.1 Variant e 105
24.2 Compiler Level Virtual Methods 106

24.3 Multiple Inheritance

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

1 Lecture 1

1.1 I/O

Definition 1.1: Streams
cin — standard input

cerr — standard error

Consider an example where we read in two numbers and a string.
import <iostream>;
using namespace std;

int main() {
int x, y;
cin >> x >> y; // Read z then read y
if ('cin.fail()) // Error Checking

string s;

© 0 N O O W N =

[
o

cin >> s; // Read until whitespace

-
IS
[}

To read in numbers and outputs, consider the following code
import <iostream>;
using namespace std;

int main() {
int i = 0;
while (true) {
cin >> 1i;
if (cin.fail()) break;
cout << i << endl;

O 00 N O O b W N =

e
N = O
(o)

()

Definition 1.2: Arrows

<< Put to operator

>> Get from operator

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

2 Lecture 2

2.1 Function Overloading
Definition 2.1: Function Overloading

The compiler determines which version of the function to call based on the number and/or

types of parameters but not return types.

Careful! 2.1

Must be unambiguous

// Multiple types of a function
int operator>>(int, int); // Function prototype
std::istream operator>>(std::istream in, char c);

DS W N -

std::istream operator>>(std::istream in, int i);

2.2 Error Handling

Question: 2.1

If reading in 2 ints and ”fails”, what happens?

int main() {
int x, y;
cin >> x >> y;

return 0;

gD WwN -

Possible errors:

e Could run out of input (EOF) for either x or y

e Reading value smaller than INT_MAX or smaller than INT_MIN; (<climits>)
e Reading in not an integer

Question: 2.2

How can we detect failure?

std::cin is an instance of std::istream

has state bits that tell us the condition of cin — read first then check

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 cin.good() // returns true tf succeeded
2 cin.eof () // * reaches the end of the file (not a char, tts a state)
3 cin.fail() // * true if either EOF or didn't get int
4 cin.bad() // unrecoverable error (not commonly used)

Consider the following code of reading an integer

1 import <iostream>;

2 using namespace std;

3

4 int main() {

5 int i;

6 while (true) {

7 cin >> i;

8 if (cin.fail()) break;
9 cout << i << endl;
10 }
11 3}

To check errors, we can use this shortcut

1 // std::istream has a function that can convert an istream to a bool
2 // i.e. std::istream::operator bool()) =2 Icin.fail()

3 // e.g. if (cin) ...

4 while (cin >> i) { // only true if successfully reading an int

5 cout << i << endl;

6 ¥

T // std::istream can call ! on cin => bool std::istream::operator!()
8 // that returns std::istream::fail()

9 // e.g.
10 while (true) {
11 cin >> value;
12 if ('cin) { // equivalent to cin.fail()
13 break;
14 }
15 }

Question: 2.3

How do we revise the program to ”throw-away” non-ints, output ints and stop on EOF?

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 while (true) {
2 cin >> value;
3 if (lcin) {
4 if (cin.eof()) break;
5 cin.clear(); // reset all state bits to original
6 cin.ignore(); // removes 1 char (by default) [take it out of the input
— stream]/
7 } else {
8 cout << value << endl;
9 }

10 3

2.3 Formatting I/O

C++ has "manipulators” to format I/O

1 import <iomanip>;
2 /*
8 can be used to :
4 - print things as hexa/octal decimal
5 - boolalpha, setw, setfill, skipws [on by default], noskipws
6 (wont be used in this course)
T */
8 cout << hex << value // all subsequent #s are in hezadecimal %.e. strictly cout <<
< dec;
Remark.

Best practice: undo any sticky changes

2.4 Strings
Definition 2.2: Strings
C uses const char * and char * where every string needs a null terminator.
e length via dynamic memory allocator requires +1
e append requires realloc, need to worry about memory leaks

e In C++, we use <string>, is part of the std namespace

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes

by Jason <3

Careful! 2.2

With G++11, always import and compile string last

1 import <string>;
2 int main() {

3

© 00 N O O

10
11 3

std:string sl; // empty string, sl.size() ==
std::string s2 = "LOL";

std::cin >> sl; // reads white-spaced eliminated word
std:: cout << s2 << sl << endl;

sl += s2;

std::string s3 = s2 + s2;

std::string line;

getline(std::cin, line); // reads entire line including whitespace up till \n

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Notes

Spring 2024
by Jason <3

3 Lecture 3

3.1 Strings

1 void f(string s) {

2 cout << s << endl;
3}

4

5 int main() {

6 string sl = "Stuart";
7 string s2{" is a good cat"};
8 s2[11] = 'b';

9
10
11 f(s1);
12 f(string{"stuart"});
13 }

3.2 Streams

if (s1 != s82) ... // lexzicographic comparison (sl < s2)

Stream is an abstraction wrapped around input and output (e.g. keyboard, screen, files etc.) We

already know
e std::cin (std::istream)

e std::cout, std:cerr (std::ostream)

1 std::istream *ip = &std::cin; // al g3

3.3 Files

Files are another form of stream

Reading in file in C:
#include <stdzo.h>

int main() {
char s[256];

while (true) {
fscanf (f, "%255s", s);
if (feof(f)) break;
print ("%s\n", s);
10 fclose(f);
11 }

1
2
3
4
5 FILE *xf = fopen("file.txt", "r");
6
7
8
9

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
12 }
In C++:
1 import <iostream>;
2 import <fstream>;
3 import <string>; // import and compile string last!!
4 using namespace std;
5
6 int main() {
7 string s;
8 ifstream in {"file.txt"}; // open in read mode
9 while (in >> s) { // in.fail () true if cannot read
10 cout << s << endl;
11 }
12 } // out of scope file closed

3.4 File Stream

An std::ifstream can do everything an std::istream can (will revisit when discussing inheritance)

1 std::istream *ip2 = ∈ // legal!
2 void bar(std::istream *in) { ... }
3 bar (&cin) ;

4 bar (&in) ;

5 bar(std: :ifstream{"in.txt"});

3.

ot

String Streams

e library: sstream => combination of string + stream

e std:: ostringstream (used to convert and possibly concatenate data that can be then retrieved

as a C-style string)

std: :string intToString(int i) {

std: :ostringstream oss;

return oss.str();

1

2

3 oss << i;
4

5 %}

Until we cover exception std::istream is the only way to convert a string to an int

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 int StringToInt(std::string s) {
2 std::istringstream iss{s};
3 int i = 0;
4 iss >> i; // iss.fail() ts true if it could not read an int;
5 return i;
6
1 // stops when EOF or invalid int
2 int i;
3 while (true) {
4 cout << "Enter a number: ";
5 string s;
6 cin >> s;
7 if (cin.eof()) break;
8 if (istringstream iss {s}; iss >> i) break; // have an int
9 cout << "I said, ";
10 }
11
12 // repeats until EOF, outputting ints
13 string s;
14 while (cin >> s) {
15 int n;
16 if (istringstream is {s}; is >> n) {
17 cout << n << endl;
18 }
19 }
3.6 Command line arguments
1 ./pgm abc 123 < file.in 2 > err.txt 1 > out.out
2 - | Bash redirection, not cmd line |
S Args to program
4 | C/C++ args |
1 int main(int argc, char *argv);
2
3 | "./pgm\0" | "abc\0O" | "123\0" | null ptr |
4 " 0 1 2 3 = argc
5 argv

To read in from arguments, consider from the following code

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Spring 2024

Notes by Jason <3
1 import <iostream>;
2 import <sstream>;
3 import <string>;
4
5 using namespace std;
6
7 int main(int argc, char *argv[]) {
8 int total = 0;
9 for (int i = 1; i < argc; ++i) {
10 string arg = argvl[il;
11 if (istream {arg} >> n) {
12 total += n;
13 }
14 }
15 cout << total << endl;
16 }

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

4 Lecture 4

4.1 Overloading
Definition 4.1: Overloading

The same function name is used but the parameters list must differ in numbers and/or

parameter types.

Remark.

Return values are not part of consideration! Calls must be unambiguous at compile time!

1 bool negate(bool b) {

2 return !b;

3}

4

5 int negate(int i) {

6 return -ij;

7 %}

8

9 int main() {

10 negate(true); // valid!
11 negate(5); // wvalid!
12 return O;

13 }

4.2 Print Suite

A function that either prints the ”stem”, one per line for the specified file name or the file ”suite.txt”

1 printSuiteFile(); // outputs suite.tzt
2 printSuiteFile("stuart.txt"); // outputs "stuart.tzt"”

Implementation:

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

import <iostream>;
import <fstream>;
import <string>;

using namespace std;

void printSuiteFile(string fname) {
ifstream in{fnamel};
for (string s; in >> s) {
cout << s << endl;

©O© 00 N O O b W N -

_
= O
(o)
()

You can give a parameter a default value. If fname is not specified, compiler puts in ”suite.txt”.

1 // Header

2 void printSuiteFile(string fname="suite.txt");

The only time we know the actual number of parameters is at the call site when we compile.
The compiler generates any missing information using the specified default value (”suite.txt”).
This allows the function to retrieve the full parameters list of values off of the runtime stack.

Otherwise, could try to access missing info from where it shouldn’t.

Careful! 4.1

All default values must be placed at the end of the parameter list!

1 bar(int i, j, k, 1) { ... }
2 bar(int i, j, int k = 1, int 1 =3) { ... }

The values must be given in the declaration if separate compilation

4.3 Structures
C++ is backwards compatible with C. Code fragment in C:
struct node {

int value;

struct node *next;

typedef struct node Node;

// Implementing node

O 00 N O O W N =

Node n; n.value = -1; n.next = NULL;

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

In C++, we do not need typedef

1 struct Node { // types start with a capital letter
2 int value;

3 Node *next;

4 }

5 // Implementing node

6 Node n; n.value = -1; n.next = NULL;

Question: 4.1

Why doesn’t this node definition work?

1 struct Node {

2 int value;

3 Node next; // compile error, missing a '*'
4 3}

While defining the Node type, the size (amount of memory to allocate) is unknown. "next”

is a Node, but don’t know the size so cannot define it.
4.4 Constants
Old C way uses #define but it isn’t type safe. (may substitute it in illegal locations)
1 #define MAX_GRADE 100
C++ uses ”const” keyword (do not use magic number)
1 const int MAX_GRADE = 100;
It cannot change a constant value, make const on what should not change.
Node n1 {5, nullptr}; // aggregate initialization: wvalue: 5, next: nullptr;
const Node n2;
n2.value = 5; // INVALID
const Node n3 {nl}; // copies nl into n3, immutable, constant

const Node n4 {-1, &nil};

n4.next.value += 1;

N o O W N

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

4.5 Parameter Passing
Definition 4.2: Parameter Passing in C

In C, there is pass by value and pass-by-reference (pointer)

int i = 4; inc(i);

1 void inc(int i) {

2 ++i;

3}

4 void inc2(int *i) {
5 of = dg

6 }

7

8

9

cout << i; // outputs 4 still
inc2(&i);
cout << i; // outputs 5;

=
= O

If T have:

1 int i;
2 cin > i; // reads 4
3 cout << i; // outputs 4;

Question: 4.2

Why no & anywhere?

Definition 4.3: Parameter passing in C++

C++ Introduces ”references” as a third parameter passing mechanism. Reference is a

constant pointer that automatically dereferenced

1 std::istream & operator>> std::istream & in;

2 int & value;

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

5 Lecture 5
5.1 Left Value and Right Value

Definition 5.1: lvalue (left value)
What can appear on the LHS of an assignment.

e It has a name / pointer / reference that allows access

Definition 5.2: rvalue (right value)

Opposite of an lvalue. e.g. Anonymous object, the result of an expression
int x = b;

where x is the lvalue, and 5 is the rvalue.

Node n = Node{5, nullptr}

where n is the lvalue, and Node{5, nullptr} is the rvalue

Definition 5.3: Reference

A reference is a constant pointer that is automatically dereferenced

1 int i = 5;
2 int & ref = i; // ref pointing to i
3 ref += 2; // % becomes 7

Remark.

int & is a lvalue reference
If °&’ appears as part of an expression, probably taking an address of a bitwise and; if imme-

diately follows a type, it’s a reference

5.2 Lvalue Referencing

int main() {

int i = 5; // & = 020000
= 0200004
int &k = j; // k = 0200004

1
2
3 int &j = i; // j
4
5

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Careful! 5.1: Common Traps

e Since reference are constant, it must be bound to an lvalue upon declaration e.g.
int & j1; // wrong;
int & j2 = i // ok

e Cannot bind an lvalue reference to an rvalue. e.g.

int & j = 5; // wrong

e Cannot have a pointer to a reference (it won’t compile). e.g.
int &* irp = &j; // wrong
However, a reference to a pointer is fine!
int *p;
int *&q = p;

q is a reference to a pointer to an integer.

e Cannot have an array (or STL containers e.g. std::vector) of references.

Question: 5.1

When do we use references?

It is mostly used for passing parameters. It may sometimes be returned by reference.

void inc (int & n) { // lwvalue reference, bound to that memory location

++n;

>

void main() {
int n = 5;
inc(n);
cout << n << endl; // print 6

©O© 0 N O O W N =

5.3 Choice of Mechanism

Motivating Example:

1 int main() {

2 int i;

3 cin >> i > j;
4 3
5
6

std::istream & operator>>(std::istream & in, int & i);

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Question: 5.2

What mechanism should we use when passing information?

Consider a really big struct object. e.g.

1 struct ReallyBig { ... };
2 ReallyBig obj;

1. Pass by value: void f(ReallyBig o);// makes a copy
Subtleties (discussed later) leads to time cost

2. Pass by pointer: void f(ReallyBig #*ptr); // address is copied

contents can be changed, it is cheap in cost (8 bytes) but pointers (have to dereference)!

3. Pass by reference: void f(ReallyBig &rbref); // cost of passing lvalue ref
A constant pointer is passed but the original (obj) can be changed

4. Pass by const reference: void f(const ReallyBig *crbref);

It has all the benefits of pass by reference but the original is immutable

Question: 5.3

What if need function to make changes as part of the algorithm but don’t want to change
the original?

Either make a local copy and change that or pass by value. (Done if only absolutely required as
the cost is heavy)

Question: 5.4

If we do not need to make a copy, what choices do we have?

e If the value doesn’t have to be changed and the size is an integer or less, prefer pass by value.

e If the value doesn’t have to be changed but is larger than an int, prefer pass it by a const

reference.
e If it should be changed, pass by reference (avoid pass by pointer)

Question: 5.5

What about where we want to pass an int by reference but could be called as either:

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 int main() {
2 int i = 5;
3 £(5);
4 £(i); // for both to be wvalid?
5 1

It must be void f(const int &i);. It allows £(5);

5.4 Dynamic Memory Allocation

e C uses alloc / calloc / malloc / realloc and void * so it is not type safe

e C++ has no realloc but is type safe (it uses nullptr and not NULL)

1 int *pl = nullptr;
2 *p2 = new int {5};
3 *p2 = 13;

4 delete pl; // ok!
5 delete p2; // ok!
6

7

8

9

P2 = new int;
*p2 = -1;
delete p2; // also ok
10 delete p2; // illegal! double free
11
12 // may show up on the ezam
13 int i = 0;
14 p2 = &i;
15 delete p2; // illegal! freeing stack memory

1 int size;

2 int *arr = new int [size];

3 arr[0] = -1;

4 delete [] arr;

5

6 Node **ar2 = new Nodex [10] {nullptr}; // initializes everything to nullptr
7 ar2[5] = new Node {6, nullptr};

8 ...

9 delete ar2([5]; // must do this before deleting array
10

11 delete [1 ar2; // does not delete the heap-allocated modes

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Careful! 5.2

DO NOT mix the forms of new and delete. If allocated with new xxx [x], free with
delete [] xxx and vice versa.

use valgrind for all programs with dynamic memory allocation

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

6 Lecture 6

6.1 Dynamic Memory Allocation

1 Node *np = new Node {5, nullptr};
2 ooc
3 delete np;

e np is on the stack

e freed when goes out of scope (i.e. local)

e If it points to heap-allocated memory, it must be freed

// allocating on heap

int **arr = new int* [5];

for (int 1 = 0; i < 5; ++i) {

arr[i] = new int [10] {0}; // set all as O

1
2
3
4
5 3}
6 ...
7 arr[0][0] = -1;
8
9

// freeing

10 for (int i = 0; i < 4; ++i) delete [] arrl[il;
11 delete[]arr;

Careful! 6.1

It is undefined behaviour to mix the 2 forms of new / delete!
Remark.
Remember, a memory leak is a failure to free heap-allocated memory
e leads to eventual failure

e In CS246, invalidates program.

6.2 Returning Information
6.2.1 Return by value

ReallyBig £(); // makes a copy (elision??) Potentially expensive

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

6.2.2 Return by pointer

1 ReallyBig *f() {

2 ReallyBig rb;

3

4 return &rb; // returns the address of a local wvariable
5 }

This is a dangling pointer, potentially dangerous. Revised version:

ReallyBig *f2() {
ReallyBig *rb = new ReallyBig;

return rb; // 7b is on heap, it still persists

int main() {

1

2

3

4

5 }
6

7

8 ReallyBig *p = £20);
9

10 delete p;

11 return 0;
12 3}

6.2.3 Return by reference

1 // Wrong
2 ReallyBig &f() {
8 ReallyBig rb;
4
5 return rb; // reference to mo longer existing local variable
6 }
7
8 // Correct
9 ReallyBig &f2() {
10 ReallyBig *p = new ReallyBig;
11
12 return *p;
13 } // have to know that the reference s heap-allocated
14
15 int main() {
16 ReallyBig &ref = £2();
17
18 delete &ref; // gets the heap allocated address

19 3

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Question: 6.1
operator>> and operator<< for I/O returns the stream by reference and it works?

Remember cin >> i is using a global variable so operator>> is returning the parameter it

received by reference.

1 std::istream &operator>>(std::istream &in, int &i);

Question: 6.2
Which returning technique should we use?
Most of the time, return by value since turns out not to be that expensive in practice due to
its elision (see this later).
6.3 Operator overloading
Can overload all operators except for:
1. :: (Scope resolution operator)
2. . (Member access)
3. *(Node.next) (Dereference + member access)
4. 7 (ternary operator)
5. %%, <>, &| (New operators [not covered yet])

We overload these to help provide an intuitive understanding of what they do. A potential use

case is extending functionality:

struct Vec {
int x, y;

};

return Vec {lhs.x + rhs.x, lhs,y + rhs, y};

1
2
3
4
5 Vec operator+(const Vec &lhs, const Vec &rhs) {
6
7 %

8

9

std: :ostream& operator<<(std::ostream& out, const Vec& v) {

10 out << |(| << v.x << n, LIPS V-y < n)n;
11 return out;
12}

13

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

14 Vec v1 {0,1}, v2 {1. 0};
15 cout << v1 + v2 << endl; // Outputs "(1, 1)";

Question: 6.3

What if T want to do a scalar multiplication where I can do v2 * 5; 3 * v2; (both ways)

Vec operator*(int s, const Vec& v) {

return Vec {s * v.x, s * v.y};

gD WwN -
(o)

Vec operator*(const Vec& v, int s) return (s * v); // calls prev func

1 struct Grade {
2 int g;
3 3}
4
5 istream&% operator>>(istream& in, Grade &g) {
6 int i ;
7 in >> i;
8 if (i > 100) i = 100;
9 else if (i < 0) i = 0;
10 g.g = 1i;
11 return in;
12 }
13
14 ostream& operator<<(ostream& out, const Grade& g) return out << g.g << "&";

6.4 Separate Compilation

Recall the following definitions from CS 136

Definition 6.1: Declaration

Statement of existence

Definition 6.2: Definition

Full description of type or function.
e Allocates space for functions and variables

e How big is struct/class (later: what methods exist)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Definition 6.3: Interface

Collection of declarations and class definitions

e Multiple declarations are ok, but can only have 1 definition.

Definition 6.4: Implementation

Where function / constants / globals are defined.

C++420 modules guarantee single definitions
e It can be made up of multiple interface and implementation files.
e When writing a module for Vec convention in CS246:

— Interface file called vec.cc

— Implementation file called vec-impl.cc

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

7 Lecture 7

7.1 Seperate Compilation (cont’)

Sample Interface file for Vec

1 // c++20 module

2 // interface: wvec.cc

3 // DO NOT PUT namespace std in the interface file!!!!!
4 export module vec; // first line!

5 import <iostream>; // after the module export

6 export struct Vec {

7 int x, y;

8 };

9
10 export Vec operator+(const Vec& v1, const Vec& v2);
11
12 export std::ostream& operator<<(std::ostream& out, const Vec &v);

When using a preprocessor, do not need exports

// c++20 preprocessor

// interface: wvec.h

#ifndef VEC_H // not always needed but best practice
#define VEC_H

#include <tostream>

struct Vec {int x, y};

Vec operator+(const Vec& vl, const Veck v2);

©O© 00 N O O W N -

[EE
(@)

std: :ostream& operator<<(std::ostream& out, const Vec &v);
#enda f

-
-

Implementation File for Vec (module version)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3

1 // c++20 modules

2 // file: wec—impl.cc

3 module vec; // must be 1st lime, reads in interface file.

4

5 Vec operator+(const Vec &lhs, const Vec &rhs) {

6 return Vec {lhs.x + rhs.x, lhs,y + rhs, y};

7 %

8

9 std::ostream& operator<<(std::ostream& out, const Vec& v) {
10 out << '(' << v.x K< ", " <K< yv.y <M,
11 return out;
12 }

Implementation File for Vec (preprocessor version)

1 // c++20 preprocessor

2 // file: vec—-impl.cc

3 #include "wvec.h" // the only difference!

4

5 Vec operator+(const Vec &lhs, const Vec &rhs) {
6 return Vec {lhs.x + rhs.x, lhs,y + rhs, y};
7T %

8

9 std::ostream& operator<<(std::ostream& out, const Vec& v) {
10 out << '(' << v.x << ", " <K< v,y <"";
11 return out;
12}

To use the module file in the main (module):

// c++20 module
// file: main.cc

import vec; // mo square brackets since not a system file

S W N -

int main() { ... }
For the preprocessor version:

// c++20 preprocessor
// file: main.cc
#include "vec.h"

int main() { ... }

W N -

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

7.2 Module Compilation
1. Compile system headers using g+-+20h
2. Must compile in dependency order!

(a) g++20m -c vec.cc
b) g++20m -c vec-impl.cc
(b) & P

(c) g++20m -c main.cc
This creates corresponding .o files

3. g++20m vec.o vec-impl.o main.o (link to create a.out) [order doesn’t matter]

Careful! 7.1: Cheap Hack
1. Run: g++20m -c *.cc twice

2. Link: g++20m *.o0 -o name

Repo has compile ”bash script”: ./compile files.txt a.out
file.txt:

vec.cc

vec-impl.cc

main.cc

Careful! 7.2: Preprocessor Compilation

DO NOT compile .h files!
g++20i -c *.cc // creates *.0
g++20i *.0 -0 name // links

Can use tools/Makefile

7.3 Classes
Definition 7.1: Class

A 7class” (usually) contains data (i.e. data fields) and functions, also known as ”methods”

or "member functions

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 // header file
2 struct Student {
3 int assns, mt, final;
4 float avg(); // do not write the code inline
5 };

// implementation file
float Student::avg() return 0.4 * assns + 0.2 * mt + 0.4 * final;

N —

Student is the class name, and :: is the scope resolution operator.

Definition 7.2: Instance

An instance variable of the class (Type) is called an object

1 Student s; // data fields aren't automatically set to O;

2 s.assns = 60;

3 Student stuart {70, 69, 85}; // Aggregate Initialization since fields are public
4 cout << stuart.avg() << endl;

Stuart is a receiver / recipient of the method call, avg() is the method call. It has implicit

hidden first parameters this. this = &stuart
e this->assns, this->mt, this->final
Definition 7.3: Constructors
e Methods used to initialize objects
e Benefits:

— Can be overloaded

— Can perform more complicated code

Sanity checks

Can have default parameters

e Lose aggregate initialization if provided any constructor and/or the data fields aren’t

public
e A "default constructor” is a constructor with 0 parameters

— Compiler gives you a default constructor for free [subject to certain limitations|

if you don’t write any constructors

— Calls default constructor for all data fields that are objects

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Spring 2024

Notes by Jason <3
1 struct Student {
2 int assns, mt, final;
3
4 Student () { // put this <in the timplementation file (don't do it inline)
5 this->assns = 0;
6 this->mt = 0;
7 this->final = 0;
8 }
9
10 Student (int assns=0, int m=0, int f=0) {
11 this->assns = a; // this—>assns specifies
12 this->mt = m;
13 this->final = f;
14 }
15 };

Using the class:

© 0 N O O W N =

= e
N = O

©O© 00 N O O b W N =

[
o

Student s1; // {0, 0, O}

Student s2{}; // {0, 0, O}, both semantically same

Student jim{45}, ellen{80, 90}, fred{60, 30, 20};
/%

jim: 45, 0, 0

ellen: 80, 90, 0

fred: 60, 30, 20

*/

Student s3 = Student{60, 70, 80};

// before c++17, the rvalue Student copied into s3

// c++17 and up, standard requires "eliston' so
Student s3{60, 70, 80};

struct Vec {
int x, y;
Vec(int x, int y) {
this->x
this->y

X;

Y

};

Vec v1; // illegal, needs 2 params
Vec v2{0, 1}; // ok!

equivalent to:

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

8 Lecture 8

8.1 Member Initialization List (MIL)

Recall struct Vec from the last class.

1 struct Basis {

2 Vec vi1, v2;

3}

4

5 Basis b; // illegal since Vec no longer has default constructors

Question: 8.1

Can we initialize v1 and v2 in Basis’ default constructor?

1 Struct Basis {
2 Vec v1, v2;
3 Basis() { vi1{0, 1}; v2{1, 0};} // making the ctor call for data fields in the body

< of the ctor ts too late!

4 %

Consider the steps for object creation (for now):

1. Allocate enough space for all the object fields (allocates in declaration order)
2. for all data fields that are objects, all their default constructors

3. Run the constructor body

If we use the member initialization list (MIL) syntax, we can call a constructor other than the
default in step 2.
Remark.

It must also be used to initialize references and constants

Pattern: <ctor-name>(<param-1list>) : fi{p1}, fo{p2}, { body of ctor }

1 struct Vec {

2 int x, y;

3 Vec(int x, int y) : x{x}, y{y} {}
4 3

5 struct Basis {

6 Vec v1, v2;

7 Basis() : vi{o, 1}, v2{1, 0} {}
8 1;

9

Basis b; // legal!

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

In C++20,

struct Vecl {
int x = 0, y = 0;
Vec() {}

6

Vecl v1; // vi.z = 0, vi.y = 0

1
2
3
4
5
6
7
8 struct Vec2 {

9 int x = 0, y = 0;
10 Vec(int x): x{x} {3}
11 3,

12

13 Vec v2{2}; // z =2, y =0

Careful! 8.1

The MIL takes precedence, only uses = 7 if data field is not listed in MIL!

struct T {
ReallyBig rb;

1
2
3
4 T(int i) : rb{i} {}
5 TO : {rb = init(i);}
6 1;

7

8

9

struct Student {
int assns, mt, final;
10 string name;
11 Student (string n) : assns{0}, mt{0}, final{0} { name = n; }
12 }; // name is "" by the end of MIL, then copies n

Remark.

Using the MIL can provide some efficiency (we’ll see better use cases later)

Preference is to use it as much as possible.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

8.2 Copy Constructor

struct Basis {

1
2 ...
3 Basis(const Vec& v1, const Vec& v2) : vi{vl.x, vi.y} v2{v2.x, v2.y} {}
4 3

Question: 8.2

But what if I don’t want to manually extract every field from my parameter object?

Use an alternate constructor form, the ”copy constructor”

1 struct Basis {

2 Vec vi, v2;

3 Basis(const Vec& v1, const Vec& v2) : vi{vi}, v2{v2} {}
4 3,

For some class ”c”, the pattern for the copy constructor.

// header file

struct c {
c(const c& otherc); // copy ctor
};

// implementation file

© 0 N O O b W N =

c::c(const c& otherc)

Fact 8.1

Compiler provides 5 (”The big 5”) operations for you (unless you write your own):

e Default constructor (ctor) (lost as soon as you write any constructor). It is called the

default constructor for that class for all object.datafields
e Destructor (dtor)
e Copy Constructor
e Move Constructor
e Copy Assignment

e Move Assignment

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

1 Student s1{60, 70, 80};
2 Student s2 = sl; // without elision, this is a copy ctor call!
3 Student s3{s1}; // also copy ctor

Fact 8.2

If all of your data fields are ”primitive” types (int, char, float ...) then the compiler-provided

versions are ”good enough”.

struct Student {
int a, m, f;

string n;

1
2
3
4
5 Student (const Student& o): af{o.a}, m{o.m}, f{o.f}, n{o.n} {}

6 // o.n is a string copy constructor! (compiler provided)

T }; //compiler-provided version does ezactly that, and can be omitted

Consider the following:

truct Node {

int data;

Node *next;

Node (int d, Node *next = nullptr;
g

Node *n = new Node {1, new Node {2, new Node {3}}};
Node m = *n; // copy constructor call

Node *p = new Node{*n};

© 0 N O O b W N =

Stack Heap
m.next->data = 5
1 delete n->next;
m /l leaving 3 dangling pointers
p n

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development
Notes

Spring 2024
by Jason <3

Fact 8.3

The default behaviour of compiler-provided copy constructor is to make ”shallow” (rather

than ”deep”) copies since it is copying the memory address (just like an int).

Before we fix copy constructor, lets take a quick look at destructors

struct Node {

1
2
3 ~ Node() { delete next; }
4 3}

e Destructors have no return type, never take parameters

e It cannot be overloaded

1 Node::Node(const Node &n) :

2 data{n.data},

S next{n.next == nullptr 7 nullptr :

4 new Node{*n.next}} // cpy ctor call, does deep cpy
5

{} // recurses till the whole list is copied over

Stack heap

T -
Node m= %n
m [—[= [# 3[4

Node X p = pew Node {0

p L [H-T=11=: [{

.

delete n ; delete p; // no leaks

benz A oter

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Question: 8.3

What happens if Node has a constructor with a single parameter, an int?

struct Node {
Node(int i);
i

void foo(const Node& n);

© 00 N O O W N =

foo(4); // stlent, implicit type comparison from int to Node;

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

9 Lecture 9
9.1 Copy Constructor (cont’)

Question: 9.1

What are the 3 ways that a copy constructor is invoked? (Assuming no elision)

e Part of an object declaration
Student s { ... }; Student sl = s; Student s2{s}; They both takes on lvalue

e Pass an object by value
void f(Student s) { ... }
f(s1); It copies 'sl’ into the parameter ’s’ through a copy constructor

It can be seen if compile with —std=c++14 and -fno-elide-constructors

e Return by value
Student g() {
Student s {30, 40, 50}; return s;

}

cout << g() << endl; Copy constructor on s to runtime stack, so can output value

Student joe = g(); copy constructor at least until we see "move semantics"

Question: 9.2

Why is this copy constructor implementation wrong?

1 // Wrong Implementation:

2 struct Node {

3 e

4 Node(Node n) { ... } // "Node n" is a copy constructor call, and Node(...) is a
— copy constructor definition. It causes infinite recursion.

5

6 3;

7

8 // The fiz:

9 struct Node {

10 ces

11 Node(const Node& n) { ... }

12

13 3};

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

9.2 Destructors Addendum
Fact 9.1

Steps of object destruction (without inheritance)
1. Run destructor body: Close resources, free heap memory etc.
2. Destroy data fields in reverse order of creation, runs destructors on any objects

3. Space for object is freed

Careful! 9.1: Use of Exit

C exit () function doesn’t know about OOP. On execution, no objects destructors will
be run! If the object was supposed to be free heap memory in destructor, it will not and

will cause a memory leak!

9.3 Single Parameter Constructors
1 struct Node {
2 ..
3 Node(int i) : data{i}, next{nullptr} {}
4
5 1}
6
7 void f(const Node& n) { ... }
8 void f(Node n) { ... } // changed to "g"
9
10 £(4); // call to f ambiguous
11 g(4); // if we change one of the functions to g, it will work
Careful! 9.2

Silent conversion is dangerous. You don’t realize where the mistake is coming. We can force
the client to explicitly make the choice by making the constructor ”explicit” keyword.

struct Node {

explicit Node(int i)

}

f(Node{4}); // legall 4 is an rvalue, ctor call

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

9.4 Copy Assignment operator

By definition, the left hand side object already exists.

1 Node ni{l, new Node{2, new Node{3, nullptr}}};

2 Node n2{4, new Node{5, nullptrl}};

S

4 n2 = nl; // copy assignment

5

6 // this == ém2

7 Node& Node::operator=(const Node& rhs) {

8 data = rhs.data; // "this" not needed here

9 delete next; // calls dtor to delete all the nodes after
10 next = (rhs.next == nullptr ? nullptr : new Node{*(rhs.next)} /* copy ctor call

o */);

11 return *this;
12 }

Question: 9.3

What happens if assignment was n1 = n1;? (Self Assignment)

Problem is that freed "next” then tried to deep copy [error!!] (could lead to segment fault)
Not too likely to write but far more possible if using Node *p, *q; *p = *q;. Therefore, we must
provide a self-assignment check.

The compiler doesn’t provide == or != for free.

1 Node& Node: :operator=(const Node& rhs) {

2 if (this == &rhs) return this; // self assignment check
8 /*

4 same as before

5 */

6 }

Question: 9.4
What happens if new failed (heap ran out of memory)?
Truth: exception is raised

But for now: operator= returns immediately the value of "next” is not changed but is a dan-

gling pointer!

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Fact 9.2

Best option: do a deep copy (after self-assignment check) but before everything else. Worst

case, copy fails and lhs is untouched.

1 Node& Node: :operator=(const Node& rhs) {

2 if (this == &rhs) return *this;

S Node *tmp = (rhs.next == nullptr? nullptr : new Node{*(rhs.next)l};
4 delete next;

5 data = rhs.data;

6 next = tmp;

7 return *this;

8

}

9.5 Copy and Swap Idiom

Definition 9.3: Idiom

Language-level solution to a common problem

import <utility>; // std::swap

Node& Node: :operator=(const Node& rhs) {
Node tmp{rhs}; // copy ctor to stack => deep copy!
std: :swap{data, tmp.datal};
std: :swap(next, tmp.next);

return *this; // tmp goes out of scope, dtor gets ran

©O© 00 N O O b W N =

// If we change it to
Node& Node: :operator=(Node tmp) { ... }
// We can get rid of the Node tmp{rhs} line (deep copties %t)

=
= O

10 Lecture 10

10.1 Move Semantics

Remember that an lvalue either has a name, a reference or a pointer to it. An rvalue is anything
not an lvalue (e.g. anonymous object, something returned by value)

Consider 10-rvalue/node.cc (A node class with a copy constructor)

1 Node oddsOrEvens() {
2 Node odds{1, new Node{3, new Node{5, nullptr}}};
3 Node evens{2, new Node{4, new Node{6,nullptr}}};

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
4 char c;
5 cin >> c;
6 if (r == '0') return evens;
7 else return odds; // compiler has to copy whichever list is returned onto the

— runtime stack
8 }
9
10 Node n = oddsOrEvents();
11 // should be a copy constructor to be copy return value into n (as of c++2011,

— elision s required)

Goal: Recognize when we have an rvalue
e "steal” the contents. (only works for dynamic memory)

e Parameter type for "move” is an "rvalue reference” is (Node &&)
struct Node {
ﬁéée(Node&& other) : data{other.data}, next{other.next} {
other.next = nullptr;
i
ﬁ;&e n = oddsOrEvens();
e Without elision: 1 move constructor to "move” local list onto run-time stack plus 1 move

constructor for n to ”steal” rvalue’s content (With elision in c¢++20, only get the first move

constructor call)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Question: 10.1

What happens with ”move assignment”?

1 Node n{1, nullptr};
2 .
3 n = oddsOrEvens();

If self-assignment (probably through std: :move) is possible, then put in a check,

1 import <utility>; // std::swap
2
3 Node& Node::operator=(Node&& other) {

4 if (this == &other) return *this; // self assn check
5 std: :swap(data, other.data);
6 std: :swap(next, other.next);
7 return *this;
8 1%
Summary:

e If have only defined copy operators, they get used for both copy and move
e If defined both copy and move operations:

— Copy for lvalues

— Move of rvalues

Question: 10.2

When do we implement the ”Big 5”7

If write 1 of them consider whether or not should write all 5, need to answer first question of

whether or not we own the "resource”. If we do, and can’t share (need deep copies, need all 5)
Fact 10.1
Elision

e As of C++11, the compiler is required to ”elide” move and/or copy constructor calls

in favour of byte-wise copy, even if the control flow is different

e You aren’t required to know the rules for when it does (or does not) occur, you just

have to know that it could (and probably will) occur

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

10.2 Member Operators
e There are 5 operators that must be methods of the class
— operator= // assignment

— operator[] // index

— operator() // function call)

operator-> // dereference and call access

T operator // type conversion

Question: 10.3

When can it be part of a class?

When first operand of operator is an instance of the class

struct Vec {
int x, y;
Vec operator+(Vec rhs);

Vec operator*(int i); // v * 4

0 N O O WN -
(-

Vec operator+(int i, Vec v); // i * v
Note: if define +, should also define += etc.

1 struct Vec {

2
3 std: :istream& operator>>(std::istream& in); // do not make methods of the
— class!!!!

4 std::ostream& operator<<(std::ostream& out);

5 %

6 ...

7 Vec v{2, 3};

8 v >> cin; // syntatically legal but counter intuitive!
9 v << cout;
10
11 int i;

12 (v >> cin) >> i; // gets ugly do not do this
13 v >> (cin >> i);

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

11 Lecture 11

11.1 Object Arrays

Question: 11.1

If we have the following, is Vec arr[10] legal?

1 struct Vec {

2 int x, y;

3 Vec(int x, int y) : x{x}, y{y} {¢
4 1

Class must have a default constructor (same for STL std:vector). Options:

1. Add a default constructor (may not be reasonable)

2. Have a stack-allocated array and call constructor on each object.
Vec arr[3] = { {0, 0}, {1, 1}, {2, 2}};
Doesn’t scale up, not a feasible solution

3. Array of (Vec *) and call constructor when (heap) allocate each
Vec *xap;
ap = new Vec*[10];

for (int i = 0; i < 10; ++i) ap = new Veci, i

for (int i = 0; i < 10; ++i) delete apl[il;
delete [] ap;;

This is the most common solution!

4. More approaches but outside of the syllabus

11.2 Constant Objects

Consider the student class from before (lectures/13-const/studentBad.cc)

Question: 11.2

In the following code, there is a compilation error since student: :grade doesn’t promise it

won’t change ”this”. How do we fix it?

1 ostream& operator<<(ostream& out, const Student& s) {

2 out << '[' << s.assms << ", " << s.mt << ", " << g.final << " = " << s.grade();
3 return out;

4 3}

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

The fix: We must declare the method as const!

1 // student.h

2 ...

3 struct Student {

4 int assns, mt, final;
5 float grade() const;
6 }

7

8 // student.cc

9 ...
10 float Student::grade() comnst {
11 return ...
12 }

Remark.

Presence / Absence allows method overloading so ”const” must be on both declaration and

definition.

Fact 11.1

We can only call const methods on const objects. If object isn’t const, can either call
const or non-const methods.
Best Practice: always declare methods const if it is not changing anything, compiler will

help you catch errors.

Consider a case where we modify Student to add a counter numCalls (for system profiling)
struct Student {
unsigned int numCalls = O;

++numCalls; // trying to change data even though its const!

1
2
3
4 o
5 float grade() const {
6
7 return ...

8

9 | I

Need to differentiate between:

e Physical constness (change any bit and the object is considered change)

e Logical constness (only considered what ”makes up” the logical concept to have changed)

e.g. change in assignment grade, final grade etc. (numCalls isn’t part of that!)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

The fix: We can declare it mutable
struct Student {

mutable unsigned int numCalls = O;

++numCalls; // legal!

return ...

1

2

S

4

5 float grade() comst {
6

7

8

9

};

11.3 Comparing Objects

Motivation:

String comparison, char by char lexicographical comparison

e In C:
const char *s1 = "...", %s2 =", .";
int result = strcmp(sl, s2); // 1 comparison
if(result == 0) {...}
if(result < 0) {...}

e In C++4:
std::string s1 = "...", s2 = "...";
if (s1 ==s2) {...}
if (s1 < s2) {...} // That will be 2 sets of comparison!
e More efficient approach introduced in C++20 is the spaceship operator, <=>

import <compare>; // std::strong_ordering::{less, greater, equal, equivalent}

std: :strong_ordering result = sl <=> s2;
if (result < 0) {

} else if (result == 0) {

} else {

© 0 N O O W N =

-
o
(o)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Fact 11.2

To save time, we can:
e auto result = sl <=> s2 // compiler chooses the type

e using std::strong_ordering;
if (result == greater)

instead of std::strong_ordering::greater

Remark.
Defining operator<=> gives you all 6 relational ops (<, <=, >, >=, == !=) since:
sl <=> s2 < 0 // has to compare result to 0 (sl < s2)

1 struct Vec {

2 int x, y;

3 Vec(int x, int y);

4 auto operator<=>(const Vec& v) const;

5

6 };

7

8 auto Vec::operator<=>(const Vec& v) const {

9 auto result = x <=> v.X;
10 return (result == 0 7 y <=> v.y : result);
11 } // actually the compiler-provided version of the spaceship op by default. Field by

— fteld, lexicographical comparison
We can tell the compiler to provide it by
1 struct Vec {
2
3 auto operator<=>(const Vec &) const = default;
4
5 };

Question: 11.3

When does the default <=> not make sense?

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

struct Node {
int data;

Node *next; // comparing pointers are not useful

auto Node::operator<=>(const Node& n) const {

auto result = data <=> n.data;

1
2
3
4
5 3}
6
7
8
9

if (result '= 0) return result;
10 if (!'next && !n.next) return result; // ==
11 if (!next) return std::strong_ordering: :less;
12 if (!n.next) return std::string_ordering::greater;
13 return *next <=> *n.next;

14 }

11.4 Invariants and encapsulation

Definition 11.3: Invariant

Statements that must be true at all points of an object’s lifetime.

1 Node ni1{l, new Node{2, new Node{3, nullptr}}};
2 Node n2{2, &ni};

We have an implicit invariant in Node that next is either a nullptr or a valid heap address.

It can be fixed by encapsulating data (and helper methods)
e ie. a ”capsule” being an opaque container

e In code, only access "public” info

1 struct Node {

2 private:

3 int data;
4 Node *next;
5 public:

6 “Node () ;

7 Node(...);
8

i 1;
10
11 Node n;
12 n.data = 1; // compiler error (since it's private)

Default accessibility /visibility with struct is public. Use class instead since it defaults to private.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

12 Lecture 12
12.1 Encapsulation (cont’)

class Vec {
int x, y; // defaults to private accessibility
public:
Vec (int x, int y);
Vec operator*(const Vec& o) const;
int getX() comnst; // accessors (gettors)
int getY() const;

void setX(int nx); // mutators (setters)

© 00 N O O W N =

void setY(int ny);

-
o
(o)

Consider the following /lectures/16-encapsulation/list.cc

1 // list.cc
2

3 export class List {

4 class Node; // forward declaration
5 Node* theList = nullptr;

6 public:

7 “List();

8 void addToFront(int i);

9 int ith(int i) const;
10 3;

Fact 12.1

If we forward declare a class or struct, we can define it as either a struct or class.

// list-impl.cc
List:: List() { delete thelList; }
struct List::Node { // we chose struct for simplicity
int data;
List: :Node *next;
“Node() ;
};
List::Node:: "Node() { delete next; } // class -> class -> func
void List::addToFront(int i) {
thelist = new Node{i, thelList};

© 0 N O O b W N =

_=
= O

}
int& List::ith(int i) const {

-
N

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
13 Node *ptr = thelList;
14 for (int ctr = 0; ctr < i: ++ctr, ptr = ptr->next); // assumes it does not
— dereference nullptr
15 return ptr->data;
16 }

Encapsulation maintains class invariant, pointer either being nullptr or heap address. However,

traversal of N-element list is now O(n?).

12.2 TIterators
Definition 12.2: Design Patterns
Common solutions to common problems but the focus is on classes and their relationships.

e Allows for code reuse, perhaps with slight tweaks

Iterator (design pattern):

e Given some sort of ADT / structure, want a pointer abstraction that enables “traversal”

1 class List {
2 class Node;
3 Node* theList = nullptr;
4 public:
5 class Iterator { // iterator NEVER has destructor
6 Node *p;
7 public:
8 explicit Iterator(Node *p) : p {p} {}
9 int& operator*() const { return p->data; }
10 Iterator& operator++() {
11 P = p—>next;
12 return *this;
13 }
14 bool operator==(const Iterator& o) const { // operator != can be generated
— by compiler
15 eturn p == 0.p;
16 }
17 };
18 e
19 Iterator begin() const { return Iterator{thelList}; }
20 Iterator end() const { return Iterator{nullptr}; }

21 3},

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

To traverse through the list with an iterator, consider the following code

List myList;

1
2 ...
3 for (Iterator it = myList.begin(); it != myList.end(); ++it) { // 0(n)
4 std::cout << *it << std::endl;

5

Fact 12.3

So long as any class provides the iterator operators, it can be used as an iterator. As long
as the ADT class has begin() and end() methods that returns an iterator, that code will

work!

e C++ provides a range-based for loop as a shortcut since this is so common.

1 List myList;

2

3 for (auto i : myList) cout << i << endl; // range based for loop

4 // i is a dereferenced iterator, copied by value

5

6 for (auto& i : myList) i += 1; // % 4s now a reference, can be mutated
12.3 Friend

Question: 12.1

Anybody can call the Iterator constructor. How do we make the constructor private?

class List {

1

2

3 public:

4 class Iterator {

) Node *p;

6 explicit Iterator(Node *p) : p{p} {}
7 public:

8

9

friend class List; // this can go anywhere in the itereator class
10 };
11 3;

A 7friend” can access everything. We can narrow friendship down to functions / methods. A
nested class can access static methods / data in outer class. Given an object/pointer/reference to

the outer class, it can access even private data / methods.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

13 Lecture 13
13.1 Encapsulation and Friendship (cont’)

Question: 13.1

What do we do if a class doesn’t provide accessors and mutators? For example Vec only

used in arithmetic, but still need I/O functions, which can’t be methods of Vec.

Declare I/O functions to be friends in Vec (anywhere in the class)

1 class Vec {
2 friend std::ostream& operator<<(std::ostream&, const Vec&);
3 friend std::istream& operator>>(std::istream&, const Vec&);
4 int x, y;
5 public:
6

7 3}

8

9

std: :ostream& operator<<(std::ostream&, const Vec&);

10 std::ostream& operator<<(std::ostream& out, const Vec& v) {

11 out << '(' <K v.x << ", " <KL yv.y <<)
12 return out;
13 1}

Question: 13.2

How to add List::size() so can safely use List::ith()?

One possible is to count the number of nodes for every call to size but that is O(n)! A better

approach would be to add a counter.
e List::add() increments the counter
e Constructor initializes it to 0
e size() is now O(1) [Small space and time inc; latter amortized|

In general, cost of <=> on two List objects. When checking for equality, worse case is O(n) on
length of shorter list. However, for operator= we can immediatley judge not equal if the 2 lengths
of differ O(1)!

Fact 13.1

If you write operator== the compier will generate operator!= but the reverse is not true.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 bool List::operator==(const List& rhs) const {
2 if (length !'= rhs.length) return false;
3 return (*this <=> rhs) == 0;
4 3
5
6 auto List::operator<=>(const List& rhs) const {
7 if (!theList && !rhs.thelist) return std::strong_ordering::equal;
8 if (!theList) return std::strong_ordering: :less;
9 if (!rhs.thelist) return std::strong_ordering::greater;
10 return (*thelList <=> *rhs.thelist);
11 3
12 ...
13 List ml, m2;
14 ...
15 if (ml <=> m2 < 0) ... // invokes it
16 List *p = new List;
17 ..
18 if (*¥p <=> m2 < 0) ... // needs to dereference if its a pointer

13.2 System Modeling

Definition 13.2: System Modeling

A visual representation of the abstractions and their relationships. The Unified Modeling

Language (UML) is a common standard. (We will be using “class models”, somewhat

simplified to represent our classes.) Model is supposed to be “language agnostic” (doesn’t

reference any particular implementation language)

Association Line
Name l

— List Node

Data Fields Role Names

'

List theList Node

1
Optional 0.1
Methods \ /

Multiplicity

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes

by Jason <3

Definition 13.3: UML Symbols

+ means public

- means private

Vec

We normally omit:

- X, Y:Integers

constructors, destructors,
accessors, mutators

+ Vec(x:Integer, y:Integer) : void
getX() : Integer
+ getY() : Integer

+

since they should always be
present

Comment
List F————-

Iterator

Dependency

Definition 13.4: Composition Relationship

It is also called “owns-a”. For example, a Basis object is “composed” (built out of) 2 Vec

objects

Properties:
e If A is composed of B
e If A is destroyed, B is destroyed
e No sharing

e Deep copying required

Basis ‘—"1'% Vec

Implicit
Multiplicity
of 1

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Notes

Spring 2024
by Jason <3

Definition 13.5: Aggregate Relationship

It is called “has a” relationship.

o If A “hasa”’ B

Sharing is possible

If A is destroyed, B is not

It creates a shallow copy

0 or more (m?)\

A and B exists independently of each other

Implemented with Pointers (maybe references)

Pond <>—*>

Duck

It can be a dynamically allocated array, std: :vector but memory is finite

1 class Pond {

2 Duck *duck [MAX_NUM_DUCKS] ;
3

4 3

Question: 13.3

To think about: Does the use of a pointer in implementation always implfy aggregation?

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Notes

Spring 2024
by Jason <3

14 Lecture 14

14.1 System Modeling (Cont’)

Question: 14.1

Does the presence of a pointer (in a class) always imply non-ownership of what is being

pointed to?

Not ownership if destructor does not free it. (insufficient information). For example,

List

0..1

theList’

Node

next

0.1

Ownership since destructor free pointers

Question: 14.2

What is implied if we change the UML class model to the following

List

Implies List loops to free each Node rather than recursive Node deletion.

14.2 Inheritance

Node

next |O..1

Definition 14.1: Inheritance

¢ “is-a” p (No multiplicities one either end of the association line)

parent / base / super class

child / derived / sub class

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Notes

Spring 2024
by Jason <3

Alternate Names:

1. Specialization (e.g. start with Student)

Student

A

Grad

Undergrad

2. Generalization (e.g. start with SciStudent, ArtsStudent)

Student

o

SciStudent

ArtsStudent

Recognizes common data / methods and promote to parent i.e. inherit commonalities

Motivating Example:

- Collection of Book, Comics and Text objects. Consider the following UML,

Question: 14.3

How to store these objects?

¢ “tagged union”

union BookTypes { Book *b; Text* t; Comic *c; };

/
/
/
/

/
/

1 /7 Book / Text / Comic

2/ / /

3 // - author : String | - author : String | - author : String

4 // - title : String | - title : String | - title : String

5 // - numPages : Integer| - numPages : Integer| - numPages : Integer/
6 // | - topic : String | - hero : String
T/ / /

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Book Types books [20];

This needs a paarallell array to remember which fields was used in books

Void pointers
void * books [20];

Not type safelll, still need a parallel array to remember what was stored and context

Recognize ”is-a” relationship
Text is a Book, Comic is a Book

We can generalize this by promoting Book to be the parent class.

Book

- author : String
- title: String
- numPages : Integer

T

Comic Text

- hero : String - topic : String

©O© 00 N O O W N -

e e e e e e e
©O© 00 NO Ol WN H+— O

class Book {

public:
Book (...); // don't want default ctor
+;

class Text:public Book {
// don't repeat parent's data fields
// since "shadows" / hid ethem
std::string topic;
public:
Text (...);
};

class Comic:public Book {
std: :string hero;
public:
Comic (...);

};

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Consider the following Text constructor implementation

1 Text::Text(const string &a, const string &t, int p, const string & top)
2 author{a}, title{t}, numPages{p}, topic{top} {}

This implementation is wrong as the child class Text does not have access to the parent class’s,
Book, information as those fields are private. Neither the “outsiders” nor the “children” can access
those fields.

- Other problem: Book does not have a default constructor and also can’t call the constructor in
Text constructor since it is too late.

- Object creation steps are now slightly different due to inheritance.
1. Allocate space for entire Object
2. Call parent’s default constructor
3. Call the default constructor for any object data fields (Execute MIL)
4. Run the constructor body

MIL can be used to call parent’s constructor. Consider the following changes to the Text con-

structor implementation

1 Text::Text(const string& a, const string& t, int p, const string &top)
2 Book{a, t, p}, topic{top} {}

Definition 14.2: Protected keyword

Can weaken encapsulation to allow children but nobody else to access data fields.

1 class Book {

2 protected:

3 string author, title;

4 int numPages;

5 public:

6 Book (...);

7

8 };

9 class Text:public Book {

10

11 public:

12 void addAuthor(const string& a) {
13 author += a; // append the string in Book (legal!)
14 }

-
o1
(o)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

A better alternative is to leave data fields private and add protected addAuthor to Book that

Text can call. This maintains invariants.

Consider isHeavy () to class hierachy

© 0 N O O W N =

e e e e e e
~N o Ok WN - O

e Book returns true if the number of pages is> 200
e Text returns true if the number of pages is > 500

e Comic returns true if the number of pages is > 30

Book b{"Alex D", "The Court of Monte Cristo", 199};
Comic c{"Tom King", "A comic book", 35, "Superman"};
b.isHeavy(); // false
c.isHeavy(); // true

b = c; // Object slicing, only the inherited Book portion of c is copied onto B
// => still treated as a Book::isHeavy() call

Book *bptr = &b;

bptr = &c; // legal! no object-slicing

bptr->isHeavy(); // invokes Book::isHeavy() not Comic::isHeavy()
// => set statically at compile time!

Comic* cptr = &c;

cptr->isHeavy(); // Comic::4isHeavy()

Book& bref = c;

bref.isHeavy(); // stattically set to Book::isHeavy()

To make this work, we will need to deeclare Book’s isHeavy() to be virtual and overriding it in

the children. Virtualness is inherited, so virtual in child even if virtual keyword is not repeated

© 0 N O O W N =

e e
S W N -, O

class Book {
public:
virtual bool isHeavy() const;

};

class Comic:public Book {
public:

virtual bool isHeavy() const override;

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

The virtual and override keyword is optional. The compiler checks that parent has a

virtual methodwith same signature excluding return type. It is best practice!

Book *bptr = &c;

bptr->isHeavy() // tinvokes Comic: :isHeavy()
bptr = &b;

bptr->isHeavy() // <nvokes Book: :isHeavy ()

DS W N -

The change allows the compiler to check the object type at runtime and call the appropriate

isHeavy () method.

Question: 14.4

What happens if we have the following;:

1 Book* bptr;

2 ...

3 bptr = new Comic { ... };
4 ..

5 delete bptr;

This code will call the Book destructor instead of Comic one, causing a memory leak.

To fix this, we can set the destructor of Book as virutal.

Careful! 14.1

If there is an inhertance hierachy, always set the destructor as virtual.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

15 Lecture 15
15.1 Polymorphism
Definition 15.1: Inheritance (cont’)
Polymorphism is Greek for “Many Forms”
e The mechanism of which of runtime, the correct class method is determine and called

e Implementation, requires a reference/pointer of the parent class type that can be set

to an instance of either the parent class or one of its children classes

e Parent has at least 1 virtual method that the child can choose to “override” (or not)

Fact 15.2

If we want to ensure that we cannot inherit from a class (enforced by compiler) by declaring
it final

1 class Y final:public X { ... };

15.2 Abstract Base Classes (ABC)
To learn more, https://isocpp.org/wiki/faq/abcs
e Some base classes shouldn’t be instantiated (abstract)

e Some methods may not have an implementation in the abstract e.g. Student: :calcFees()

requires know if is a regular or co-op student

1 class Student {

2 protected:

3 unsigned int numCourses;

4 public:

5

6 virtual int calcFees() const = 0; // = 0 makes it a "pure" virtual method, 7i.e.
— cant create a Student

7

8 }

Even though pure virtual, can still provide an Implementation! (has to go in the “implementa-
tion” file)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 class RegularStudent:public Student {
2 public:
3 virtual int calcFees() const;
4
5 };

We can now implementation RegularStudent: :calcFees() in Implementation file, and in-
stantiate RegularStudent objects. Student is called an Abstract Class, RegularStudent is called

a “concrete” class.

e If no good choice as to which method to make pure virtual, can always use the destructor

but must still implemented in the implementation file
e UML notation: ABC name must be italicized. Student or Student{abstract}

e The UML standard only italicizes pure virtual methods but in this course, we’ll italicize all

forms of virtual methods. (If it matters, put = 0 at end of a pure virtual method signature.)

15.3 Templates

Remember our List class from before

1 class List {

2 struct Node {
3 int data;
4 Node *next;
5

6 Irg

7 public:

8

9

(-

Question: 15.1

If we want a List that can store other types, need a new class would duplicate everything

and just replace data types. Are there any alternatives?

We can use templates (Inheritance would not work the desired way)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 template <typename T> class List { // typename can be replaced with class
2 struct Node {

3 T data;
4 Node *next;
5
6 };
7 Node *theList = nullptr;
8 public:
9 “List() { delete thelist; }
10 void addtoFront(T value) {
11 thelist = new Node{value, theList};
12 }
13 T& ith(int idx) const;
14 class Iterator {
15 friend class List;
16 Iterator(...) { ... }
17 public:
18 T operator*() const;
19 Iterator& operator++();
20 bool operator!=(const Iterator &) const;
21 e
22 };

Since we need the entire class definition and implementation at the point of instantiation, we
can’t seperate code into interface and implementation file. However, we can still implement in the

interface /header file.

List<int> myList1l;
List<List<int>> myList2;

List<string> myList3;

myListl.addToFront (100) ;
myList2.addToFront (myListl); // walid

for (auto el : myListl) {
cout << el << endl;

©O© 0 N O O W N =

-
o
(o)

STL provides a variety of containers. We are going to start with std: :vector, which is dynam-
ically resizable, but does all of the allocation/copying for you. Consider the following use cases of

std: :vector,

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 import <vector>;
2 using std::vector;
3
4 vector<int> vl; // empty i.e. vl.size() => 0
5 vector<int> v2{4, 5}; // only contains: 4, 5
6 vector<int> v3(4, 5); // contains: 5, 5, 5, 5 (4 = 5)
7
8 if (v3[1] == 6) ... // [] has mo bounds checking, must be 0 <= z < size() - 1
9 vil.push_back(l); // optimized to insert at end
10 v1.push_back(2);
11
12 vector<Student> vo;
13 vo.emplace_back(30, 40 ,50); // emplace_back for object ctor call
14
15 vector v4{4, 5, 6, 7}; // compiler deduces types from values
16
17 for (std::vector<int>::iterator it = vl.begin(); it != vl.end(); ++it) {
18 cout << *it << endl;
19 3}
20
21 for (auto elem : v3) cout << elem << endl;
22
23 for (std::vector<int>::reverse_iterator it = v3.rbegin();
24 it != v3.rend(); ++it) { ... }
25
26 v3.pop_back(); // removes last item
27 v3.clear(); // empties entire wector, has no motion of ownership
28 // so if its an arr of pointers, must free yourself

Question: 15.2

Remove all 5’s from v {1, 2, 5, 5, 6, 7, 5}, how do we do that?

We can use erase in combination with iterator e.g. v.erase(v.begin() + 3)

1 // 1st attempt
2 for (auto it = v.begin(); it != v.end(); ++it) {
3 if (*it == 5) v.erase(it);

4 %

This shifts everything by 1, skipping the next element in sequence ”5”. So if we erase, we don’t
want to preincrement it since we might skip over next match. Iterator will no longer be valid after

erase (might have made array smaller and points to old array)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

1 for (auto it = v.begin(); it != v.end(; /* no ++ */) {
2 it (*it == 5) it = v.erase(it);

3 else ++it;

4 3}

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

16 Lecture 16

16.1 Templates (cont’)

Polymorphism ensures the correct behaviour at runtime

1 class AbstractIterator {
2 public:
3 virtual “AbstractIterator();
4 bool operator!=(const AbstractIterator &) const = 0;
5 AbstractIterator* operator++() = 0;
6 int operator*() const = 0;
7}
8
9 class List {
10
11 public:
12 classIterator:public AbstractIterator {
13
14 bg
15
16 3;

We can now do the following

1 void forEach(AbstractIterator & st, const AbstractIterator & en, void (*f) (int)) {
2 while (st !'= en) {

3 f(*st);

4 ++st;

5 }

6 1}

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development
Notes

Spring 2024
by Jason <3

16.2 Observer Design Pattern

Consider the code from lectures/24-observer. It is also known as “Public Subscribe”.

Subject

ConcreteSubject

+
+

+ getState(): ...

attach(Observer) : void
detach(Observer) : void

ConcreteObserver

+

notify() : void

std: :vector<Observer*> obs;

void Subject::attach(Observer *o) {

void Subject::detach(Observer *o0) {

void Subject::notifyObservers() {

for (auto o : obs) o—>notify();

+ notifyObservers() : void
Observer
+ notify() : void =0
1 class Observer;
2
3 class Subject {
4
5 public:
6 virtual “Subject() = 0;
7 void attach(Observer *);
8 void detach(Observer *);
9 void notifyObservers();
10 3;
11
12 Subject:: Subject() {}
13
14 obs.push_back(o) ;
15 }
16
17 . Af (it == 0) {
18 obs.erase(it);
19 break;
20 b oo
21 }
22
23
24 3}

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

class Observer {
public:
virtual void notify() = 0;

virtual “Observer() {}

class HorseRace:public Subject {

ifstream in;

1
2
3
4
5 3}
6
7
8
9

std::string lastWinner;

10 public:

11 HorseRace(string fname) : in{fname} {}
12 bool runRace() {

13 in >> lastWinner;

14 return in.good();

15 ¥

16 String winner() comnst {

17 return lastWinner;

18 }

19 1}

20

21 class Bettor:public Observer {

22 HorseRace *hr;

23 string name, hname;

24 public:

25 Bettor (HorseRace *h, string n, string hn) : hr{h}, name{n}, hname{hn} {
26 hr->attach(this);

27 }

28 “Bettor() { hr->detach(this); }

29 void notify() {

30 if (hr->winner() == hname) {
31 cout << "Yahoo" << endl;;
32 } else {

33 cout << "Boohoo << endl;
34 +

35 }

36 %

37

38 int main() {

39 HorseRace hr { '"races.txt };

40 Bettor bob {&hr, "Bob", "Horse 1"};
41 ... // create more bettors

42 while (hr::runRace()) {

43 hr.notifyObservers(); // general may be triggered from outside or by

— subject
44 ks
A5 1

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development
Notes

Spring 2024
by Jason <3

16.3 Decorator Design Pattern

Dynamically change appearance and/or capabilities

Component I | Decorator

+ operation() = 0; <——< + operation() =0;

f i

ConcreteComponent |

+ operation() = 0;

ConcreteDec 1

ConcreteDec n

25-decorator

Pizza
+ price() : Float =0 Decorator
+ desc(): String = 0
Crust & Sauce Topping

© 00 N O O W N =

el e e e e e
0 ~NO Ok WN - O

Pizza #*p = new CrustAndSauce;
p = new Topping {"bacon", 1, pl};
p = new Topping{"Cheese", 0.25 p};

cout << p->desc << " " << p->price << endl;

class Pizza {
public:
virtual “Pizza() {}
virtual string des() const = 0;

virtual float price() const = 0;

class CrustAndSauce:public Pizza {
public:
string desc() const { return "crust and
float price() const { return 8.50; }
};

sauce"; }

e Let me combine in any desired fashion without an exponential number of classes being needed

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

19

20 class Decorator:public Pizza {
21 protected:

22 Pizza *next;

23 public:

24 Decorator(Pizza *p) : next {p} {}

25 virtual Decorator() { delete next; }

26 };

27

28 class Topping:public Decorator {

29 string topping;

30 float cost;

31 public:

32 Topping(Pizza *p, string t, float c) :

33 Decorator{p}, top{t}, cost{c} {}

34 string desc() const { return top + " " + next->desc(); }
35 float price() const { return cost + next->price(); }

36 1;

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

17 Lecture 17

17.1 Modularization
Question: 17.1

What goes into a module?

So far we’ve had 1 class per module; but a module can contain multiple functions and/or classes

(can also be split across multiple files.)

Question: 17.2

How do we choose a module’s content

There are 2 main metrics for judging software design (coupling and cohesion are used to help

decide upon the contents of your module (or class))

1. Coupling (How much do 2 distinct modules depend upon each other)
Low — High:

(a) Communicate by passing around primitive types

(b) Pass around arrays and Structures

(c) Modules Affect each other’s control flow
)

(d) Share global dataknows and has access to implementation details (e.g. “friends”)
If we have high / tight coupling,

e Changes in 1 causes changes in other
e Makes code reuse harder since we cannt just pick up and use something else without

changes

2. Cohesion (How closely related are the eleements of a module (or class))
Low — High:

(a) Unrelated/arbitrary grouping of elements (e.g. <utility>:std::swap, std::pair

(b) Possibly still unrelated, but common theme or code base (e.g. <algorithm> has tem-

plated function that use iterators)
(¢) Elements manipulate state over a lifetime (e.g. opentfile, read, close file)
(d) Pass data to each other

(e) Cooperate to perform a single task

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Low Cohesion: Hard to understand and maintain (if reuse, get other unwanted elements as
well)

Fact 17.1

We should aim to have high cohesion and low coupling.

Question: 17.3

What happens if you have 2 classes that depend upon each other? Consider the following

code.

class A {
int x;
B y;
13

1
2
3
4
5
6 class B {

7 char x;

8 A y;

9 | I

C++ does not allow this.

Question: 17.4

Does forward declaration fix this?

1 class B;
2 class A { int x; B y; };
3 class B { char x; A y; };

Still need change. We need to change either A y or B y (or both) into A *y; B *y to get this
to work.

Cases where we must still declare classes in order

1 class C{ ... }; // parent

2 class D:public C { ... }; // child
3 class E{ Ca; ... };

Remark.

Remember that C++20 modules requires compilation independancy order (C before D or E.)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

17.2 Decoupling Interfaces (MVC)

Consider a chess program:
1 class ChessBoard { ... cout << "Your move" ... };
Have to change code if you want I/O to use files.
Question: 17.5

What if we want to add a graphical user interface (GUI)?

Problem is that the chess board class is both the data model and interacts with the user.
That violates the “Single Responsibility Principle” (SRP) i.e. each class should only have one
reason to change. This leads us to the architectual pattern, Model-View-Controller (MVC)

Model View

Controller

Model: Data Model

View: User interface/display (text, graphics, etc.)

Controller: Mediates between view and model (Grey area for rule, enforcementment-model? Con-
troller?)

Can also add an observer design pattern on it by linking model and view.

17.3 Exception

Should be used in “exceptional” circumstances (can’t easily locally reecover from an error). Though
it has a performance penalty for deciding “who” handles this. std::vector::at(i) verifies 0 <
i < size() if outside of valid range, at() raises/throws an exception. Generated code looks
for a handler for std::out_of _range (exception library). (C++ lets you throw anything as an

exception). If you can’t find a matching handler, program terminates with an unhandled exception

error.
1 void h() { throw 1; }
2 void gO { ... hO; ... %}
3 void £O { ... g0; ... %}
4 int mainO { ... £O; ... }

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

“Stack unwinding” is the process of finding a matching handler. If frame has no handler, imme-

diately disqualified; else look through them. When frame is removed, all local object destructors

are run.
1 void h() { throw 1; }
2 void g(O) {
3 try {
4 h(); cout << 1;
5 } catch (...) {
6 cout << 2; throw 'x';
7 }
8 }
9 void £O { ... gO; ... }
10 int main() {
11 try {
12 £(); cout << 3;
13 } catch (...) {
14 cout << 4; cout << 5;
15 }

16 } // outputs 2 4 5

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

18 Lecture 18
18.1 Exception (cont’)
Fact 18.1

Modules cannot forward declare another module or elements of another module!

Question: 18.1

Why do we resolve exception if handling them is slow?

1 int& 2int::get(unsigned int idx) {

2 return v.at(idx); // raise std::out_of_range because at() uses exception
3}

4

5 int& set = mylist.get(1000); // after exzception %is raised no code is processed

— after

6

7 try {

8 int& set = mylist.get(1000);

9 } catch (std::out_of_range e) {
10 cerr << e.what();
11 3}

e — std::vector::at() recognizes out of bounds index but doesn’t know how to respond

(e.g. ask another time for idx)
— Client deals with error but doesn’t detect it

— Isolate error handling from “Regular exception code”

We also cannot ignore exception because it stops the program.
Alternative: C mechanism of checking error is return vals as a global errno val. (Passive,

checking cannot be forced.)

We can also throw whatever object you want for your exception. (Use object inheritance for

exception object)

Exception lib is an inheritance hierachy

Consider the following example inheritance + exception

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
BaseEx
+ () : void
ExceptionEx
1. Throw Base Ex, 2. Throw ExceptionEx

(Cause object slicing but legal)

1 try {
2 e
3 } catch (BaseEx 1) { b.10;
4
5 try { // We should always catch by reference
6
7 } catch (BaseEx &b) { // will catch EzceptionEz because it is an inheritance of
< BaseEzx
8 . b.10 ...
9 } catch (ExceptionEx &e) {
10 .. e 10 ...
11 3%
Fact 18.2

We should always catch in order of most to least specific

1 ExceptionEx e;
2 BaseEx &b = e;
3 throw b; // raises base ezception, looks at type of b, doesn't consider what b is

— pointed to

Fact 18.3

We should always Raise by value

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 ExceptionEx e;
2 throw e;
3
4 try {
5 . // call that will throw e
6 } catch (BaseEx &b) {
7 . 1.bQ); ... // method 1l has to be wirtual base ezception or override for
— specific exceptions
8 throw b; // b is type BaseEzf ratses base ezception
9 throw; // checks for underlying object type throws ExceptionEx
10 3

Now consider destructors + exceptions

e Remember that “stack unwinding” guarantees that destructors for all local objects are ex-
ecuted as the function / method frame activation is removed from the runtime stack in the

search for a matching handler

Question: 18.2

What happens if stack is being unwound to find handlers, + destructors trigger another

exception

As long as it doesn’t allow destructors to raise exceptions.

Way around destruction is to tag it with noexcept(false)

18.2 Smart Pointers

Consider the following code

1 void 10 {

2 C mc;

3 C* pc = new C;

4 gO; // raises exception, causes memory leak since pc not deleted
5 delete pc;

6 }

A potential solution to this problem is the following,

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes by Jason <3
1 void 10 {
2 C mc;
3 C* pc = new C;
4 try {
5 g0
6 } catch (...) {
7 delete pc;
8 throw; // reraise exception, prevent double free
<) }
10 delete pc;

11 3

2 Frees are not ideal, it could get complex quickly. Consider another solution with a helper.

e Some languages like Java have a “finally” clause (finally) code in block is always executed

even if exception is raised.
e “Resource Acquisition is Initialization” idiom (RAII)

— Applied to any owned resource (e.g heap memory)
— ifstream file{"in.txt"}; outside of scope, file closed, buffer cleared

— std::unique_ptr from <memory> library stores any pointer type

1 void £O {

2 C mc;

8 std::unique_ptr<C> p{new C}; // this is an object itself

4 g0; // if g raises exception, destructor for p is called mo issues
5 %

Copy is disabled, we must use move. Other ways of creating unique pointers:

1 void 10 {

2 C mc;

3 auto p = std::make_unique<C>(ctor args); // calls new for us
4 gO;

5 }

Consider the following code,

1 unique_ptr<C> p{new C};
2 unique_ptr<C> q = p;

Careful! 18.1: Common Mistakes

This will cause an error, implicit copy

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

To fix this, we must pass underlying address without changing ownership
e Owner holds unique pointers

e Owner passes underlying raw heap address to/from methods and functions unless transferring

ownership.

Consider lectures/26-unique_ptr

1 template<typename T> class unique_ptr {

2 T* ptr;

S explicit unique_ptr(T* p) : ptr{p} {}

4 “unique_ptr() { delete ptr; } // not virtual, ho inheritance in stdlib
5 unique_ptr(const unique_ptr &) = delete; // can't copy

6 unique_ptr<T>& operator=(const unique_ptr &) = delete;

7 unique_ptr(unique_ptr<T> && o) : ptr{o.ptr} { o.ptr = nullptr; }

8 };

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

19 Lecture 19
19.1 Smart Pointers (cont’)

Fact 19.1

There is no copy for unique pointers, only move!!

1 unique_ptr<T>& operator=(unique_ptr<T> && other) {
2 delete ptr;
S ptr = other.ptr;
4 other.ptr = nullptr;
5 return *this;
6

7

8

T+ get() const { return ptr; } // ezxtracts raw pointer
9
10 T& operator*() { return *ptr; } // dereference operator

To determine which type of pointers to use,

e Check ownership (i.e. do we allow copies?) If sole owner with no sharing, we should use

std: :unique_ptr. We can use get () to obtain raw pointer and pass that.
Passing unique pointers:
1 void f(std::unique_ptr<c> p); // f takes on ownership of p => caller loses
— ownership

2 void g(c* p); // mo ownership transfer, caller may not even point to heap memory! g
— should NOT delete 4t

Returning unique pointers:

1 std::unique_ptr<c> £(); // move operation, transfers ownership from f to reciepient

2 Cx g(); // no ownership transfer, caller may not be final owner (do not delete)

In certain rare circumstances, ownership is truly shared It is usually implemented by a “refer-

ence counter”. The last one pointing to it frees it upon going out of scope.
int main() {

auto pl = std::make_shared<C>(); // ref cnt == 1

auto p2 = pl; // ref cnt == 2

1

2

3

4 if (...) Ao
5

6 } // ref cnt == 1 after it goes out of scope
7

} pl goes out of scope so frees ((x))

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Best practice is to choose the appropriate smart pointer type based upon ownership. It dras-

tically reduces the number of memory problems.

19.2 Map
STL map

e include / import <map>; std::map<k, v>. This uses std: :pair from <utility>
std::pair<S, T> => S first; T second; // <= public data fields

e Used for dictionaries since it consists of a key value pair. Its keys must be unique, it either

provides operator< or client defines a “comparator function” It is usually implentered

e Itereation is in key order

1 std;:map<std::string, int> m;

2 m["abc"] = 1;

3 m["def"] = 3;

4

5 cout << m["abc"] // outputs 1

6 cout << m["ghi"]l // inserts previously non ezistent key and default
7

8 if (m.count("xyz") == 1) { // it will either return O or 1

9 m.erase("def");

10 // removes key value pair when key == "def"

11)

12

13 for (auto& p : m) { // p is a std::pair

14 cout << '(' << p.first << ", " << p.second << ')' << endl;;
15 }

C++20 also allows “structured binding’

1 for (auto &[key, value] : m)
2 cout << '(' << key ", " << value << ')' << endl;

Structured bindings can only be used in

1. Structs where all fields are public. (e.g. Vec v1, 2; // Assume struct with only public
fields
auto [x, y] = v;)

2. Stack-allocated Array of known size (e.g. int al[l = {1, 2, 3}; auto [x, y, z] = a;)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

19.3 Inheritance and the Big 5

Assume that the Book class is defined as before, including hte big 5 i.e. all the move, copy

constructors and assignment operators

class Book {
std::string author, title;
int numPages;
public:
// ctor, accessors, mutators, big 5

};

class Text: public Book {

© 0 N O O W N =

std::string topic;

[
o

public:

-
[

// ctor, accessors, mutators, mo big 5

-
N

};

=
S W

Text t1 { ... };
Text t2 = t1;

-
(¢}

Compiler uses Book copy constructor to copy Book portion of t1 into t2. It will then proceed,
field-by,field, copying (std::string has copy ops). We could declare Text’s copy constructor to
be default.

1 class Text: public Book {

2

3 public:

4 Text (const Text &) = default;
5

6 1};

If we wanted to instead implement it:
1 Text::Text(const Text *t) : Book{t}, topic{t.topic} {}
Question: 19.1

How about the move constructor?

We need to apply std::move to parameter since it is an lvalue (despite it being an rvalue

reference)

1 Text::Text(Text && t) : Book{std::move(t)}, topic{std::move(t.topic)} {}

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Text && t is an lvalue and Book{std: :move(t)} invokes Book move constructor

Text& Text::operator=(const Text& other) {
if (this == &other) return *this;
Book: :operator=(other); // copy inherited book information

topic = other.topic;
b

Text& Text::operator=(Text && other) {

1
2
3
4
5 return *this;
6
7
8
9 if (this == &other) return *this;

10 Book: :operator=(std: :move(other)) ;
11 topic = std::move(other.topic);
12 return *this;

13 }

All of the code above is default behaviour.

Consider the following

1 Text t1{...}, t2{...};

2 Book *pbl = &tl, *pb2 = &t2;
3 aac

4 xpbl = xpb2; // t1 = t2?
Question: 19.2

Whose copy assignment operator gets invoked?

Book’s copy assignment operator gets invoked as it is not a virtual method. We statically
hard-code at compile time the address of Book’s copy assignment. Therefore, the Book portion of

t2 is copied into t1. This is called partial assignment.

Question: 19.3

To think about: Can we fix this by making move and copy assignments Virtual?

Hint: no it makes things worse.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

20 Lecture 20
20.1 Inheritance and the Big 5 (cont’)

Question: 20.1

Would making copy or move assignment virtual fix this?
Consider the following code
class Book {
it
virtual Book& operator=(const Book &);

};

© 00 N O O W N =

class Text: public Book {

-
o

public:

= o=
W N =

virtual text& operator=(const Book &) override; // const Tezt & is NOT an
— owverride

14 3,

15

16 Text t { ... };

17 Comic ¢ { ... };

18 Book b { ... }, *blp = &t, *bp2 = &c;

19

20 t = b; // legal! but still partial assignment

21 *bpl = b; // still ~°

22 *bpl = *bp2; // legal but assigning siblings across the hierachy is called "mized"

< asstgnment

Version 1 of fixing this prperly prevents both partial and mixed assignment but at the cost of
disallowing assignment through base class. (Solution is to introduce an abstract base class whose

copy / move assignment operation is protected)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Spring 2024

Notes by Jason <3
AbstractBook
- author : String
- ftitle : String
- numPages : Integer
operator={const AbstraciBook &b) : AbstractBook
Text Comic
Book
- topic: String - hero @ String
1 class AbstractBook {
2 std::string author, title;
8 int numPages;
4 protected:
5 AbstractBook& operator=(const AbstractBook & o) {
6 if (this == &o0) return *this;
7 author = o.author; title = o.title;
8 numPages = o.numPages;
9 return *this;
10 }
11 public:
12 virtual ~AbstractBook() = 0;
13 // ctors, accessors, mutators
14 };
15
16 AbstractBook:: AbstractBook() {} // must be implemented and mot inline
17
18 class Book: public AbstractBook {
19 public:
20
21 NormalBook& operator=(const NormalBook& o) {
22 AbstractBook: :operator=(0);
23 return *this;
24 }
25
26 };

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Notes

Spring 2024
by Jason <3

e Nobody from outside the hierachy can assign using (AbstractBook *) or (AbstractBook

&) since it is protected. (This prevents partial and mixed assignment)

e It can only assign “like” objects i.e. Text = Text

1
2
3
4
5

}

hero =

return *this;

20.2 Casting

Remember that C casts as float f

o.hero;

Comic& Comic::operator=(const Comic & o) {

AbstractBook: :operator=(0) ;

(float) 4; (Cast may cause “widening” or “narrowing” of

the data). This method of casting is not typesafe which is forbidden in CS246 .C++ provides four

different ways to cast information

1. Static Cast (*): you are guaranteeing that the compiler that the cast is safe and will work;

otherwise, unspecified behaviour.

g W N -

2. Reinterpret Cast: Unsafe, implementation-dependent for

int pi = std
Book *bptr =
Text *tptr =
Text &tref
Text t = std

::static_cast<int>(3.1415);

};

std: :static_cast<Text *>(bptr);
std: :static_Cast<Text &> (*bptr);
::static_cast<Text> (xbptr);

new Text { ...

“weird” casts where behaviour

may be unspecified. Consider the following examples in repo,

e Makes a private datafield into public

e Converts a 1-D array (on heap) to a 2-D array

We will later explore object layout to see how compiler implements virtual methods

1

2 Comic c =

Text t { ...

};

std: :reinterpret_cast<Comic>(t);

3. Const Cast: Useful but use it with caution. It is used to add or remove the constness from

something

1 void f(Student & s);
2 void g(const Student & s) {
f(std: :const_cast<Student &>(s)); // f COULD change s

3
4

}

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development
Notes

Spring 2024
by Jason <3

4. Dynamic Cast (**): It is used when conversion might fail

e If we are trying to convert from 1 pointer type to another and the conversion fails, it

returns a nullptr

1 Book *bptr = ...;

2
3 auto p = std::dynamic_cast<Text *>(bptr);
4 if (p '= nullptr) { ... p—>xxx ... }

e If casting to an object or reference and cast fails, the exception std: :bad_cast is raised

1 try {

2 Text &tref = std::dynamic_cast<Text &>(bref);
3 cout << tref.getTopic();

4 } catch (std::bad_cast &e) { ... }

N.B.: only works for inheritance hierachy with at least 1 virtual method due to need to check

runtime type information (RTTI)

Aside: 4 types of casting for smart pointers but only works on std: :shared ptr

1 static_pointer_cast, const_pointer_cast, dynamic_pointer_cast,

— reinterpret_pointer_cast

Given that we now have std::dynamic_cast, we can fix our version of assignment that was

virtual

1 class Book {

2 e

3 public:

4 virtual Book& operator=(const Book &) ;
5

6 1}

T Text& Text::operator=(const Book & o) {

8 if (this == &o0) return *this;

9 Text *tptr = std::dynamic_cast<Text *>(o);
10 if (tptr == nullptr) {
11 cerr << "RHS not a Text"
12 return *this;
13 }

14 Book: :operator=(0) ;

15 topic = tptr->topic;

16 return *this;

17 3,

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024

Notes

by Jason <3

21 Lecture 21

21.1 Static Fields and Methods

Definition 21.1: Static

It can be used outside of an object instance. It exists outside of th eobject memory, it is

associated with the class.

© 0 N O O W N =

(-

class Student {
public:
inline static int NUM_INSTANCES = 0;
static int getNumInstances() { return NUM_INSTANCES; }

Student (int as, int md, int fi) : as{as}, md{md}, fi{fi} {

++NUM_INSTANCES;

Definition 21.2: Inline Keyword

Lets you initialize variables in the .h class definition

Student
cout <<
Student
cout <<
cout <<

gD wWwN -

st ={...1%}

Student: :NUM_INSTANCES << endl; // 1

s2 =4 ...}

Student: :NUM_INSTANCES << endl; // 2
Student: :getNumInstances() << endl; // 2

21.2 Factory Method

Consider the scenario where we want to write a video game with two kinds of enemies,

e Turtles and Bullets

e Turtle flies bullets

e Bullets kills us

We need to shoot down turtles so they don’t kill us

We also have two levels, easy and hard. More bullets in hard.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Spring 2024

Notes by Jason <3
Enemy Level
i i
| |
Turtle Bullet Easy Hard
1 class Level {
2 public:
3 virtual Enemy* createEnemy() = 0; // factory method
o)
5
6 class Easy: public Level {
7 public:
8 Enemy* createEnemy() override {
9 // create mostly turtles
10 }
11 3
12
13 class Hard: public Level {
14 public:
15 Enemy* createEnemy() override {
16 // create mostly bullets
17 }
18 3;
19
20 int main() {
21 Player *p = ...
22 Level *ez;
23 Level *op;
24 Level *currentlevel = ez;
25 while (p->notDead()) {
26 // generates enemy based on level
27 e = currentLevel->createEnemy(); // factory of enemy
28 }
29 %

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

21.3 Template Method
Definition 21.3: Template Method
e Base class implements the template or skeleton and the subclasses fills the blank

e Base class allows overriding some virtual method but other non-virtual methods

must remain unchanged

e Some methods in base class are virtual and some are not

1 class Turtle {
2 void drawFeet() { ... }
3 void drawHead() { ... }
4 virtual void drawShell() = 0; // private func can also be virtual
5 public:
6 void draw() {
7 drawHead () ;
8 drawShell();
9 drawFeet () ;
10 }
11 3¥;
12
13 class RedTurtle : public Turtle {
14 void drawShell() override {
15 // draw red shell
16 }
17 3,
18
19 class GreenTurtle : public Turtle {
20 void drawShell() override {
21 // draw green shell
22 }
23 1;

In the example, the subclass can only change the way the shell is drawn since we want to have
a standard way to draw head and feet.

Remark.
Virtual methods:

e public: interface for client, promise certain behaviour - promise pre/post conditions and

class invariants

e private: an interface to subclasses, behaviour can be replaced by anything the subclass

wants

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Definition 21.4: NVI Idiom

All public methods should be made non-virtual and all virtual metods should be private

or at least protected (except destructors).

// Non NVI:
class DigitalMedia {
public:
virtual void play() = O;
1

// NVI:
class DigitalMedia {

© 0 N O O b W N =

virtual void doPlay() = 0;

[
o

public:

11 void play() {
12 ...

13 doPlay () ;
14

15 }

16 3,

If we need to exert extra control over play() we can do it. We can later decide to add extra
code before or after doPlay(). We can also add more hooks by calling virtual methods from
play() (e.g. showCoverArt()). It is much easier to take this kind of control over our virtual
methods from the beginning that to try to take back control over them later.

Remark.

The NVI Idiom extends to the Template Method Pattern by putting every virtual method inside
a non-virtual wrapper. We aren’t losing efficiency because a good compiler can optimize away

the extra function calls.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

22 Lecture 22

22.1 Exception Safety

Exception safety does not imply that exceptions we never raised, nor that all exceptions are
handled. Consider the execution of some function f, what levels of “exception safety” can f

guarantee? There are 3 levels:

1. Basic: If an exception occurs, then the program must be in some valid but unspecified state.

(No data is corrupted, class invariants still hold, no memory leaks)

2. Strong: Provides everything Basic that the basic exception safety level guaranteed does,
but in an addition restores state to be as if £() was never called (If £() has non-local side-
effects (changes global or static data, I/O etc.), we may not undo changes in which case can’t

provide a strong exception safety level guarantee)

3. No Throw: Does not let exceptions propogate and guarantees that £ () succeeds (extremely
hard)

Consider the following code

1 class A { ... public: void g(); ... };
2 class B { ... public: void k(); ... };
3 class C {

4 A a;

5 B b;

6 public:

7 void £() {

8 a.g0;

9 b.k(O);

10 }

11 3

If A: :g and B: :k provides no exception safety level guarantees, C: : £ may not be able to provide
any exception safety level guarantees.

Let’s assume that both A::g and B: :k provide strong exception safety level guarantee

1 void C::f(Q) {
2 a.gO; // 1
8 b.kO; // 2
4 3

1. If a.g() throws an exception, we know a is back in original state due to strong exception
safety level guarnatee. (No handler, so stack unwinds, remove f’s frame and as if c::£()

never executed)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

2. If b.h() throws an exception but a.g() does not, we will need to undo changes of a.g() if

c::f is going to meet strong exception safety level guarantee

Since the compiler provides copy and move, we can do the following (copy and swap variant)

1 void C::£0 {

2 A tmpA{a}; // copies

S B tmpB{b}; // copies

4 tmpA.g();

5 tmpB. k() ;

6 // if either raises an ezception originals are untouched
7 a = tmph;

8 b = tmpB;

o

If copy assignment cannot fail, it meets strong exception safety level guarantees.

Question: 22.1

What happens if the copy assignment fails (e.g. deep copy or heap ran out of space?)

We will use the Pointer to Implementation (PImpl) idiom

1 struct CImpl { A a; B b; };

2 class C{

S std: :unique_ptr<CImpl> pImpl; // assume initialized in C constructor
4 public:

5 void £() {

6 auto tmp = std::make_unique<CImpl>(*pImpl) ;

7 tmp->a.g(); // changes the copy

8 tmp->b.k();

9 std: :swap(pImpl, tmp); // no throw

10 }

11 3

22.2 Exception Safety and std::vector
e std::vector is implemented using a dynamic array (uses RAII)

o If type is some (class) C:
1 vector<C> vl1; // ownership i.e. destroys all C INSTANCES
2 vector<unique_ptr<C>> v2; // °

3 vector<Cx> v3; // not ouner "has a"

std: :vector requires that C provides some form of copy assignment

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

std::vector::emplace_back offers a strong exception safety level guarantee

However, copying is slower and more expensive than move

Question: 22.2

Can emplace_back take advantage of move semantics?

If move assignment fails partially through moving data from the old array to the new array, our

original array state changed!

1 class C {

2

3 public:

4 C(C &% o) noexcept { ... }

5 C& operator(C && o) noexcept { ... }
6

7}

Fact 22.1

Best Practice: mark move, swap operations as noexcept so that compiler can optimize

22.3 Template Functions

Consider the function,

1 int min(int a, int b) {
2 return a < b 7 a : b;
3}

Turning min() into a template function requires that the type T with which its instantiated

provides operator<

template<typename T>
T min(T a, T b) {

return A < b 7 a : b;

cout << min<int>(3, 5);

cout << min(3, 5); // <int> type deduction exwists!
cout << min('x', 'y'); // <char>

cout << min(1.2, 6.9); // <float>

© 0 N O O W N =

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Fact 22.2

So as long as the parameter type is not ambiguous, compiler can deduce it.

Remember the following

1 void foreach(AbstractIterator & start, AbstractIterator & stop, int (£*)(int)) {
2 while(start != stop) {

S f(*start);

4 ++start;

5 }

6 }

Can generalize this further with templates (std::for_each from STL <algorithms>)

1 template<typename It, typename Fn>
2 void for_each(It & start, It & stop, Fn f) { // same as before }

This will work on arrays and pointers to!

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

23 Lecture 23

23.1 STL Algorithms (cont’)

Remeber the std: :for_each from last lectures

1 void f(int n) { std::cout << n << std::endl; }
2 int all = {1, 2, 3, 4, 5};

3 for_each(a, a + 5, f); // prints array contents
Let’s look at some others,

template <typename Iter, typename T>
Iter find(Iter & start, Iter & stop, T & val);
// searches [start, stop) for "wval" => T::operator==

// If found, returns tterator pointing to match

a D W N -

// Otherwise, returns "stop"

There is also a similar function std: :count that returns the number of matches

1 template <typename Inlter, typename Outlter>

2 OutIter std::copy(Inlnter & start, const Inlter & stop, Outlter & out);

3 // Copies from [start, stop) into out and returns where outer stopped

4

5 std::vector v{1, 2, 3, 4, 5, 6};

6 std::vector<int>w(4); // reserves space for 4 ints

7 std::copy(v.begin() + 1, v.begin() + 5, w.begin()); // copies 2 3 4 5 into w
Remark.

Current form of iterator won’t increase vector capacity under operator= if we run out of space.

We must ensure output container has enough space.
Consider std::transform i.e. works just like std::copy but adds a function to change each

element at the end

template <typename InIter, typename OutlIter, class fn>
OutIter std::transform(InIter & start, const InIter & stop, OutIter & out, Fn f);
// applies f to each element copied

std::vector v{l, 2, 3, 4, 5};

std: :vector(v.size());

transform(v.begin(), v.end(), w.begin(), addl);
// w contains {2, 3, 4, 5, 6}

0 ~NO O WN -

Let’s look at generalizing how we cann std::transform, starting with the function (pointer)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

[Look at function objects and lambdas]

Definition 23.1: Function object

Object that behaves like a function (Class has operator()) as a method

It start with replacing the function addi

class Plusl {
public:
int operator() (int i) {

return ++i;

g

Plusl p;

cout << p(4); // 5

transform(v.begin(), v.end(), w.begin(), Plusi{});

© 00 N O O W N+
(-

Question: 23.1

What if we want to add a user-specified amount to every int?

We can initialize with amount and use in operator()

1 class Plus {

2 int m;

3 public:

4 Plus(int m) : m{m} {}

5 int operator() (int i) { return i + m; }
6

7

}
transform(..., Plus{5}); // adds 5 to each element

Key benefit to a function object its its ability to remember state.

class IncPlus {

int m = 0;

int operator()(int n) { return n + m++; }

1
2
3 public:
4
5

};

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

23.2 Lambdas
Question: 23.2

What if the function is only ever used in one place in the code?
We can replace a lambda declaration in the code
even(int n) {
return n % 2 == 0;
}

vector<int> v;

int numEven = std::count_if(v.begin(), v.end(), even);

~N O O W N

int numEven = std::count_if(v.begin().v.end(), [](int n){ return n}%2 == 0; });

23.3 [Iterator Library
e include / import <iterator>
e Can apply iterators to Streams

1 vector v{1, 2, 3, 4, 5};
2 std:ostream_iterator<int> out{cout, ", "}; // {"write to", "put after"}
3 copy(v.begin(), v.end(), out); // outputs to cout "1, 2, 3, 4, 5, "

Question: 23.3

Can we now fix things such that operator= can increase the vector capacity?

Every container with some form of push back (i.e. vector, deque, list) can use the “back inserter”

iterator

1 vector v =o{...73;
2 vector<int> w;

3 copy(v.begin(), v.end(), back_inserter(w.begin()));

23.4 Casting

Question: 23.4

Is std: :dynamic_cast good or bad?

In the case of copy / move assignment under polymorphism in an inheritance hierachy was

fine. It can s till easily extend hierachy without affecting assignment. Consider the following

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

1 void whatIsIt(shared_ptr<Book> b) {

2 if (dynamic_pointer_cast<Comic>(b)) {

3 cout << "Comic";

4 } else if (dynamic_pointer_cast<text>(b)) {
5 cout << "Text";

6 } else if (b) cout << "Normal book";

7 else cout << "Nothing"

8

3

This is tightly highly coupled to the Book hierachy, so it must be changed if hierachy changes.
We have to change all similar code structures, may miss some. A better approach would be to use

virtual methods i.e. delegate!

1 class Book {
2
3 public:
4 virtual void print() const { cout << "Book"; }
5
6 I;
7 class Text : public Book {
8
9 public:
10 virtual void print() const override {cout << "Text"; }
11 3
12
13 void whatIsIt(shared_ptr<Book> b) {
14 if (b) b->print();
15 else cout << "Nothing";
16 }

Inheritance (and polymorphism) works well when:
1. Have infinitely extendable hierachy
2. Public interfaces are the same

Doesn’t when have only a few classes (known from the start) that will (almost) never change

(willing to absorb cost of change if do add a class) and interfaces are very different.

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

class Turtle {
public:
void stealShell();
};

class Bullet {
public:
void deflect();

O© 00 N O O b W N -

};

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

24 Lecture 24

24.1 Variant
Question: 24.1

What do we do when we want the equivalent of a polymorphic container [holds (possibly

abstract) base class pointers| but inheritance isn’t appropriate?

import / include <variant>
e Equivalent to a “tagged union” but type-safe

o If attempt to retrieve a type it’s not holding, raises std: :bad_variant_access

std::variant<Turtle, Bullet> enemy; // can hold a turtle or a bullet
// could use "typedef" but we prefer "using"

using Enemy = std::variant<Turtle, Bullet>;

Enemy el{Turtle{}};

Enemy e2{Bullet{}};

Enemy e3; // what happens?

o O WN -

Since Turtle is listed first and has a default constructor, that’s what €3 holds. We must have the

following creation rules:

e Since first-type must have a default constructor, either add a default constructor or reorder

classes so one with default constructor is first

e use std::monostate as first type (equivalent to a “null object”)

if (std::holds_alternative<Turtle>(el)) {
cout << "Turtle";

} else ...

1

2

3

4

5 try {
6 Turtle t = std::get<Turtle>(e2);
7 t.stealShell();

8

9

} catch (std::bad_variant_accessor & e) {
10
11 3

Aside: <optional> contains std: :optional<T>. It is used for mostly return types from functions

that may fail (i.e. returns T or “nothing”)

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

24.2 Compiler Level Virtual Methods

Consider the following code:

1 class Vecl {

2 int a, b;

3 public:

4 void g() { ++a; }

5 };

6

7 class Vec2 {

8 int c, d;

9 public:

10 virtual void £() { ++c; }

11 3

12

13 int main() {

14 Vecl v;

15 Vec2 w;

16 cout << sizeof(int) // 4

17 << sizeof(v) // 8 (g turned into a function and stored with others)
18 << sizeof(w) // 16 (storing an additional pointer)
19 3}

w contains a vptr (“virtual pointer”) + ¢ 4+ d. All Vec2 objects have the same address for their
vptr. It points to a “virtual table” (vtable) that contains runtime type info (RTTI) i.e. “What

are you?” and the names and addresses of all virtual methods.

1 w.f0;
w vtable
vptr 7
Vec?2 f()
c
£ .
d

1. Look at vptr and to follow to vtable
2. Look up location of £

3. Go there and execute

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development Spring 2024
Notes by Jason <3

Question: 24.2

What happens in an inheritance hierachy with virtual methods?

Consider Book vs Text

Book b{...}; vtable
a if (b.isHeavy())
vptr ™ “Book” //////'
Title isHeavy () [17
Author ~Book () [+
numPages
Text bi{...}; vtable
B if (bptr->isHeavy())
vptr > “Book” ’/////’
Title isHeavy()PT/
Author ~Book () [+
numPages
topic Book* bptr = &t;

[Looks a lot like a Book ptr]

24.3 Multiple Inheritance

For example,
e Monotreme which is both a Mammal and a Oviparous

e Conway’s Game of Life where a cell is both a subject and an observer

https://www.jasonhon.com

CS 246 : Object-Oriented Software Development

Spring 2024

Question: 24.4

How do we ensure only 1 copy of A’s data?

Notes by Jason <3
A
+ a: Integer
+ foo : void
B C
+ b:Integer + c:Integer
+ foo : void + foo : void
D
+ b :Integer
+ foo : void
Question: 24.3
Given some object d of type D how many copies of a exists?
A default compiler choice is 2 copies of a. d.a is ambiguous! d.B::a? d.C::a?

We use virtual inheritance (see C++ IO Modules). We do not change class A but we make

B, C inherit virtually from A

1 class B : virtual public A { ... };
2 class C : virtual public A { ... };
3 class D : public B, public C { ... };

https://www.jasonhon.com

Spring 2024

CS 246 : Object-Oriented Software Development
Notes by Jason <3
vptr B b;
// C looks same
As fields . no space between A
and B information
vptr
B’s fields
«— BorD
S B Pointers

B’s fields

vptr
Naive] Actual)
A’s fields
Approach: Layout: C fields not 0 amount of data
B .. between A and B

C... D Fields
D..

vptr(A)

A fields

C++20 introduces:

1. Ranges — pair of iterators

2. Views — can be used to eliminate intermediary stage

https://www.jasonhon.com

	Lecture 1
	I/O

	Lecture 2
	Function Overloading
	Error Handling
	Formatting I/O
	Strings

	Lecture 3
	Strings
	Streams
	Files
	File Stream
	String Streams
	Command line arguments

	Lecture 4
	Overloading
	Print Suite
	Structures
	Constants
	Parameter Passing

	Lecture 5
	Left Value and Right Value
	Lvalue Referencing
	Choice of Mechanism
	Dynamic Memory Allocation

	Lecture 6
	Dynamic Memory Allocation
	Returning Information
	Return by value
	Return by pointer
	Return by reference

	Operator overloading
	Separate Compilation

	Lecture 7
	Seperate Compilation (cont')
	Module Compilation
	Classes

	Lecture 8
	Member Initialization List (MIL)
	Copy Constructor

	Lecture 9
	Copy Constructor (cont')
	Destructors Addendum
	Single Parameter Constructors
	Copy Assignment operator
	Copy and Swap Idiom

	Lecture 10
	Move Semantics
	Member Operators

	Lecture 11
	Object Arrays
	Constant Objects
	Comparing Objects
	Invariants and encapsulation

	Lecture 12
	Encapsulation (cont')
	Iterators
	Friend

	Lecture 13
	Encapsulation and Friendship (cont')
	System Modeling

	Lecture 14
	System Modeling (Cont')
	Inheritance

	Lecture 15
	Polymorphism
	Abstract Base Classes (ABC)
	Templates

	Lecture 16
	Templates (cont')
	Observer Design Pattern
	Decorator Design Pattern

	Lecture 17
	Modularization
	Decoupling Interfaces (MVC)
	Exception

	Lecture 18
	Exception (cont')
	Smart Pointers

	Lecture 19
	Smart Pointers (cont')
	Map
	Inheritance and the Big 5

	Lecture 20
	Inheritance and the Big 5 (cont')
	Casting

	Lecture 21
	Static Fields and Methods
	Factory Method
	Template Method

	Lecture 22
	Exception Safety
	Exception Safety and std::vector
	Template Functions

	Lecture 23
	STL Algorithms (cont')
	Lambdas
	Iterator Library
	Casting

	Lecture 24
	Variant
	Compiler Level Virtual Methods
	Multiple Inheritance

